考研线性代数:行列式部分初级专项练习题(2024 年)

题目 06

已知 $\boldsymbol{A}$ $=$ $\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)$ 为三阶矩阵, 且 $|\boldsymbol{A}|=3$, 则 $\left|\boldsymbol{\alpha}_{1}+2 \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{2}-3 \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{3}+2 \boldsymbol{\alpha}_{1}\right|=?$

解析 06

$$
\left(\alpha_{1}+2 \alpha_{2}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}+2 \alpha_{1}\right)=
$$

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\left(\begin{array}{ccc}1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & -3 & 1\end{array}\right) \Rightarrow
$$

$$
\left|\alpha_{1}+2 \alpha_{2}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}+2 \alpha_{1}\right|=
$$

$$
|A| \cdot \left|\begin{array}{ccc}1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & -3 & 1\end{array}\right|=
$$

$$
3(1+0-12-0-0-0) =
$$

$$
3 \times(-11)=-33.
$$

或者:

$$
\left|\alpha_{1}+2 \alpha_{2}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}+2 \alpha_{1}\right| =
$$

$$
\left|\alpha_{1}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}+2 \alpha_{1}\right|+
$$

$$
\left|2 \alpha_{2}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}+2 \alpha_{1}\right|=
$$

Tips:

通过初等行变换,可以将 $\left|\alpha_{1}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}+2 \alpha_{1}\right|$ 化简为 $\left|\alpha_{1}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}\right|$——

或者也可以将 $\left|\alpha_{1}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}+2 \alpha_{1}\right|$ 拆分成 $\left|\alpha_{1}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}\right|$ 和 $\left|\alpha_{1}, \alpha_{2}-3 \alpha_{3}, 2 \alpha_{1}\right|$——

由于 $\left|\alpha_{1}, \alpha_{2}-3 \alpha_{3}, 2 \alpha_{1}\right|$ 中的 $\alpha_{1}$ 和 $2 \alpha_{1}$ 成比例,因此 $\left|\alpha_{1}, \alpha_{2}-3 \alpha_{3}, 2 \alpha_{1}\right|$ $=$ $0$.

$$
\left|\alpha_{1}, \alpha_{2}-3 \alpha_{3}, \alpha_{3}\right|+
$$

$$
\left|\alpha_{2},-3 \alpha_{3}, 2 \alpha_{1}\right| =
$$

$$
\left|\alpha_{1}, \alpha_{2}, \alpha_{3}\right|-2 \times 3\left|\alpha_{2}, \alpha_{3}, 2 \alpha_{1}\right| =
$$

$$
\left|\alpha_{1}, \alpha_{2}, \alpha_{3}\right|-12\left|\alpha_{2}, \alpha_{3}, \alpha_{1}\right| =
$$

Tips:

将 $\left|\alpha_{2}, \alpha_{3}, \alpha_{1}\right|$ 中的 $\alpha_{2}$ 和 $\alpha_{1}$ 交换位置需要移动两次。

$$
\left|\alpha_{1}, \alpha_{2}, \alpha_{3}\right|-12 \times(-1)^{2}\left|\alpha_{1}, \alpha_{2}, \alpha_{3}\right| =
$$

$$
3-12 \times 3=(1-12) \times 3=-33.
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress