考研线性代数:行列式部分初级专项练习题(2024 年)

题目 12

$$
D=\left|\begin{array}{cccc}2 a & -1 & 0 & 0 \\ a^{2} & 2 a & -1 & 0 \\ 0 & a^{2} & 2 a & -1 \\ 0 & 0 & a^{2} & 2 a\end{array}\right|=
$$

解析 12

$$
D=\left|\begin{array}{cccc}2 a & -1 & 0 & 0 \\ a^{2} & 2 a & -1 & 0 \\ 0 & a^{2} & 2 a & -1 \\ 0 & 0 & a^{2} & 2 a\end{array}\right|=
$$

$$
2 a\left|\begin{array}{ccc}2 a & -1 & 0 \\ a^{2} & 2 a & -1 \\ 0 & a^{2} & 2 a\end{array}\right|+\left|\begin{array}{ccc}a^{2} & -1 & 0 \\ 0 & 2 a & -1 \\ 0 & a^{2} & 2 a\end{array}\right|=
$$

$$
2 a\left(2 a\left|\begin{array}{cc}2 a & -1 \\ a^{2} & 2 a\end{array}\right|+\left|\begin{array}{cc}a^{2} & -1 \\ 0 & 2 a\end{array}\right|\right)+
$$

$$
a^{2}\left|\begin{array}{cc}2 a & -1 \\ a^{2} & 2 a\end{array}\right| + \left|\begin{array}{cc}0 & -1 \\ 0 & 2 a\end{array}\right|=
$$

$$
2 a\left[\begin{array}{ll}2 a\left(4 a^{2}+a^{2}\right)+2 a^{3}\end{array}\right]+a^{2}\left(4 a^{2}+a^{2}\right)+0 =
$$

$$
2 a\left(10 a^{3}+2 a^{3}\right)+5 a^{4} =
$$

$$
24 a^{4}+5 a^{4}=29 a^{4}.
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress