考研线性代数:行列式部分初级专项练习题(2024 年)

题目 11

已知 $D=\left|\begin{array}{cccc}
2 & -5 & 1 & 2 \\
-3 & 7 & -1 & 4 \\
5 & -9 & 2 & 7 \\
4 & -6 & 1 & 2
\end{array}\right|$, 则 $D = ?$, $M_{31} + M_{33} + M_{34} = ?$

解析 11

$$
D=\left|\begin{array}{cccc}
2 & -5 & 1 & 2 \\
-3 & 7 & -1 & 4 \\
5 & -9 & 2 & 7 \\
4 & -6 & 1 & 2
\end{array}\right|=
$$

$$
\left|\begin{array}{cccc}
-2 & 1 & 1 & 0 \\
-11 & 19 & -1 & 6 \\
-9 & 12 & 2 & 3 \\
0 & 0 & 1 & 0
\end{array}\right|=
$$

$$
(-1)^{4+3} \cdot\left|\begin{array}{ccc}
-2 & 1 & 0 \\
-11 & 19 & 6 \\
-9 & 12 & 3
\end{array}\right|=
$$

$$
-\left|\begin{array}{ccc}
0 & 1 & 0 \\
27 & 19 & 6 \\
15 & 12 & 3
\end{array}\right| =
$$

$$
\left|\begin{array}{cc}
27 & 6 \\
15 & 3
\end{array}\right|=
$$

$$
27 \times 3-15 \times 6=
$$

$$
(27-30) \times 3=(-3) \times 3=-9.
$$

接着:

$$
M_{31}+M_{33}+M_{34}=
$$

$$
(-1)^{3+1} A_{31}+0 \times A_{32}+(-1)^{3+3} A_{33}+(-1)^{3+4} A_{34}=
$$

$$
1 \times A_{31}+0 \times A_{32}+ 1 \times A_{33}+(-1) \times A_{34}=
$$

$$
\left|\begin{array}{cccc}2 & -5 & 1 & 2 \\ -3 & 7 & -1 & 4 \\ 1 & 0 & 1 & -1 \\ 4 & -6 & 1 & 2\end{array}\right|=\left|\begin{array}{cccc}1 & -5 & 1 & 3 \\ -2 & 7 & -1 & 3 \\ 0 & 0 & 1 & 0 \\ 3 & -6 & 1 & 3\end{array}\right|=
$$

$$
\left|\begin{array}{cccc}1 & -5 & 3 \\ -2 & 7 & 3 \\ 3 & -6 & 3\end{array}\right|=\left|\begin{array}{ccc}1 & -5 & 3 \\ -3 & 12 & 0 \\ 2 & -1 & 0\end{array}\right|=
$$

$$
3 \times \left|\begin{array}{ccc}-3 & 12 \\ 2 & -1\end{array} \right| = 3(3-24)=3 \times(-21)=-63.
$$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress