一、题目
已知 $a$ 为常数,计算如下定积分:
$$
\int \frac{1}{a^{2} + x^{2}} \mathrm{d} x
$$
二、解析
$$
\int \frac{1}{a^{2} + x^{2}} \mathrm{d} x =
$$
$$
\int \frac{1}{a^{2}} \Big[ \frac{1}{1+(\frac{x}{a})^{2}} \Big] \mathrm{d} x.
$$
又:
$$
\mathrm{d} (\frac{x}{a}) = \frac{1}{a} \mathrm{d} x \Rightarrow
$$
$$
\mathrm{d} x = a \cdot \mathrm{d} (\frac{x}{a}).
$$
于是:
$$
\int \frac{1}{a^{2}} \cdot a \cdot \Big[ \frac{1}{1+(\frac{x}{a})^{2}} \Big] \mathrm{d} (\frac{x}{a}) =
$$
$$
\frac{1}{a} \int \frac{1}{1 + (\frac{x}{a})^{2}} \mathrm{d} (\frac{x}{a}) =
$$
$$
\frac{1}{a} \arctan (\frac{x}{a}) + C.
$$
其中,$C$ 为任意常数。