第二类曲线积分中积分路径的可加性(B017)

问题

已知,有向曲线弧 $L$ 可分成两段光滑的有向曲线弧 $L_{1}$ 和 $L_{2}$, 则 $\int_{L}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $=$ $?$

选项

[A].   $\int_{L}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $=$ $\int_{\frac{1}{L_{1}}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $+$ $\int_{\frac{1}{L_{2}}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$

[B].   $\int_{L}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $=$ $\int_{L + L_{1}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $+$ $\int_{L + L_{2}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$

[C].   $\int_{L}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $=$ $\int_{L_{1}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $-$ $\int_{L_{2}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$

[D].   $\int_{L}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $=$ $\int_{L_{1}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $+$ $\int_{L_{2}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\int_{L}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $=$ $\int_{L_{1}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$ $+$ $\int_{L_{2}}$ $\boldsymbol{F}(x, y)$ $\cdot$ $\mathrm{d} \boldsymbol{r}$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress