三元隐函数的复合函数求导法则(B012)

问题

设由方程组 $\left\{\begin{array}{l}F(x, y, z)=0 \\ G(x, y, z)=0\end{array}\right.$ 确定的隐函数为 $y$ $=$ $y(x)$ 与 $z$ $=$ $z(x)$, 则 $\frac{\mathrm{d} y}{\mathrm{~d} x}$ 和 $\frac{\mathrm{d} z}{\mathrm{~d} x}$ 可以通过解以下哪个线性方程组求出?

选项

[A].   $\left\{\begin{array}{l} F_{x}^{\prime}+F_{y}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}+F_{x}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \\ G_{x}^{\prime}+G_{y}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \end{array}\right.$

[B].   $\left\{\begin{array}{l} F_{x}^{\prime}+F_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ G_{x}^{\prime}+G_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}\right.$

[C].   $\left\{\begin{array}{l} F_{x}+F_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{x}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ G_{x}+G_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}\right.$

[D].   $\left\{\begin{array}{l} F_{z}^{\prime}+F_{x}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{y}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ G_{z}^{\prime}+G_{x}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{y}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}\right.$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\left\{\begin{array}{l} F_{x}^{\prime}+F_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ G_{x}^{\prime}+G_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}\right.$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress