三元复合函数求导法则(B012)

问题

已知函数 $F(x, y, z)$ $=$ $0$, 若 $F_{z}^{\prime}$ $\neq$ $0$, 则 $\frac{\partial z}{\partial x}$ $=$ $?$, $\frac{\partial z}{\partial y}$ $=$ $?$

选项

[A].   $\frac{\partial z}{\partial x}$ $=$ $-$ $\frac{F_{x}^{\prime}(x, y, z)}{F_{z}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $-$ $\frac{F_{y}^{\prime}(x, y, z)}{F_{z}(x, y, z)}$

[B].   $\frac{\partial z}{\partial x}$ $=$ $\frac{F_{x}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $\frac{F_{y}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$

[C].   $\frac{\partial z}{\partial x}$ $=$ $-$ $\frac{F_{x}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $-$ $\frac{F_{y}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$

[D].   $\frac{\partial z}{\partial x}$ $=$ $-$ $\frac{F_{z}^{\prime}(x, y, z)}{F_{x}^{\prime}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $-$ $\frac{F_{z}^{\prime}(x, y, z)}{F_{y}^{\prime}(x, y, z)}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{\partial z}{\partial x}$ $=$ $-$ $\frac{F_{x}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$, $\frac{\partial z}{\partial y}$ $=$ $-$ $\frac{F_{y}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress