问题
若有向量 $\vec{a}$ 和其模 $\vec{|a|}$, 且向量 $\vec{a}$ 的坐标为 $(x, y, z)$, 则如何计算向量 $\vec{a}$ 的单位化向量的坐标?选项
[A]. $\frac{\vec{a}}{\vec{|a|}}$ $=$ $($ $\frac{x}{\sqrt{x^{2} \cdot y^{2} \cdot z^{2}}}$, $\frac{y}{\sqrt{x^{2} \cdot y^{2} \cdot z^{2}}}$, $\frac{z}{\sqrt{x^{2} \cdot y^{2} \cdot z^{2}}}$ $)$[B]. $\frac{\vec{a}}{\vec{|a|}}$ $=$ $($ $\frac{\sqrt{x}}{\sqrt{x^{2} + y^{2} + z^{2}}}$, $\frac{\sqrt{y}}{\sqrt{x^{2} + y^{2} + z^{2}}}$, $\frac{\sqrt{z}}{\sqrt{x^{2} + y^{2} + z^{2}}}$ $)$
[C]. $\frac{\vec{a}}{\vec{|a|}}$ $=$ $($ $\frac{x^{2}}{\sqrt{x^{2} + y^{2} + z^{2}}}$, $\frac{y^{2}}{\sqrt{x^{2} + y^{2} + z^{2}}}$, $\frac{z^{2}}{\sqrt{x^{2} + y^{2} + z^{2}}}$ $)$
[D]. $\frac{\vec{a}}{\vec{|a|}}$ $=$ $($ $\frac{x}{\sqrt{x^{2} + y^{2} + z^{2}}}$, $\frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}$, $\frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}$ $)$
向量 $\vec{a}$ 单位向量的坐标为:
$\frac{\textcolor{orange}{\vec{a}}}{\textcolor{orange}{\vec{|a|}}}$ $\textcolor{green}{=}$ $\big($ $\frac{\textcolor{red}{x}}{\textcolor{cyan}{\sqrt{x^{2} + y^{2} + z^{2}}}}$, $\frac{\textcolor{red}{y}}{\textcolor{cyan}{\sqrt{x^{2} + y^{2} + z^{2}}}}$, $\frac{\textcolor{red}{z}}{\textcolor{cyan}{\sqrt{x^{2} + y^{2} + z^{2}}}}$ $\big)$