一、前言
在本文中,荒原之梦网将使用奇函数的定义完成对 $\textcolor{orange}{F(x)}$ $\textcolor{orange}{=}$ $\textcolor{orange}{\ln(x + \sqrt{1 + x^{2}})}$ 是奇函数还是偶函数的判断。
继续阅读“$F(x)$ $=$ $\ln(x + \sqrt{1 + x^{2}})$ 是奇函数还是偶函数?”在本文中,荒原之梦网将使用奇函数的定义完成对 $\textcolor{orange}{F(x)}$ $\textcolor{orange}{=}$ $\textcolor{orange}{\ln(x + \sqrt{1 + x^{2}})}$ 是奇函数还是偶函数的判断。
继续阅读“$F(x)$ $=$ $\ln(x + \sqrt{1 + x^{2}})$ 是奇函数还是偶函数?”在做有些涉及极限的题目时,我们常常会遇到下面这样的表述:
$$
\lim_{n \rightarrow \textcolor{orange}{\infty}}
$$
但是,我们可能会产生这样的疑问:
$\lim_{n \rightarrow \textcolor{orange}{\infty}}$ 既不是 $\lim_{n \rightarrow \textcolor{red}{+} \textcolor{orange}{\infty}}$, 也不是 $\lim_{n \rightarrow \textcolor{cyan}{-} \textcolor{orange}{\infty}}$, 那么,在计算含有 $\lim_{n \rightarrow \textcolor{orange}{\infty}}$ 的式子时该怎么计算,需要 分 类 讨 论 嘛?
继续阅读“高数极限小技巧:$\lim_{n \rightarrow \textcolor{orange}{\infty}}$ 默认就是 $\lim_{n \rightarrow \textcolor{red}{+} \textcolor{orange}{\infty}}$”设 $y$ $=$ $y(x)$ 是二阶常系数线性微分方程 $\textcolor{orange}{y^{\prime \prime}}$ $\textcolor{orange}{+}$ $\textcolor{orange}{2 m y^{\prime}}$ $\textcolor{orange}{+}$ $\textcolor{orange}{n^{2} y}$ $\textcolor{orange}{=}$ $\textcolor{orange}{0}$ 满足 $\textcolor{orange}{y(0)}$ $\textcolor{orange}{=}$ $\textcolor{orange}{a}$ 与 $\textcolor{orange}{y^{\prime}(0)}$ $\textcolor{orange}{=}$ $\textcolor{orange}{b}$ 的特解,其中 $m$ 和 $n$ 为常数,且 $\textcolor{orange}{m}$ $\textcolor{orange}{>}$ $\textcolor{orange}{n}$ $\textcolor{orange}{>}$ $\textcolor{orange}{0}$, 则 $\textcolor{orange}{\int_{0}^{+ \infty}}$ $\textcolor{orange}{y(x)}$ $\textcolor{orange}{\mathrm{d} x}$ $\textcolor{orange}{=}$ $\textcolor{orange}{?}$
继续阅读“计算微分方程 $y^{\prime \prime}$ $+$ $2 m y^{\prime}$ $+$ $n^{2} y$ $=$ $0$ 满足一定条件特解的无穷限反常积分”方程 $y^{\prime \prime}$ $+$ $y^{\prime}$ $-$ $2 y$ $=$ $(6x + 2) e^{x}$ 满足条件 $y(0)$ $=$ $3$, $y^{\prime}(0)$ $=$ $0$ 的特解 $y^{*}$ $=$ $?$
继续阅读“计算微分方程 $y^{\prime \prime}$ $+$ $y^{\prime}$ $-$ $2 y$ $=$ $(6x + 2) e^{x}$ 满足指定条件的特解”微分方程 $y$ $y^{\prime \prime}$ $+$ $2$ $(y^{\prime})^{2}$ $=$ $0$ 满足初始条件 $y(0)$ $=$ $1$, $y^{\prime}(0)$ $=$ $-1$ 的特解是?
继续阅读“计算微分方程 $y$ $y^{\prime \prime}$ $+$ $2$ $(y^{\prime})^{2}$ $=$ $0$ 满足给定初始条件的特解”对变上限积分:
$$
\textcolor{orange}{
\int_{0}^{x} t f(x – t) \mathrm{d} t}
$$
进行求导运算的结果是什么?
继续阅读“对变上限积分 $\int_{0}^{x}$ $t f(x – t)$ $\mathrm{d} t$ 进行求导运算”$$
\textcolor{tan}{
\int e^{\int (\frac{1}{y^{2}} – \frac{2}{y}) \mathrm{d} y} \mathrm{d} y} = ?
$$
当 $x$ $\rightarrow$ $0$ 时,有一个重要的等价无穷小:
$$
\textcolor{orange}{e^{x} – 1 \sim x}
$$
但是,有时候我们可能会将该等价无穷小错记成下面这种形式:
$$
\textcolor{gray}{1 – e^{x} \sim x}
$$
泰勒公式在极限运算、无穷小代换等方面的解题过程中都有着重要的作用,但对泰勒公式的记忆有时候却很麻烦——在本文中,荒原之梦网为大家提供一种通过“逐步简化”的方法来记忆泰勒公式的步骤,以加强我们对于泰勒公式的掌握。
继续阅读“用逐步简化的方法记忆泰勒公式(泰勒定理)”在数学中,通过寻找不同的公式之间的相同点或者差异点,可以让我们对公式的记忆与理解更加深入,例如:
$$
1 + \tan^{2} \alpha = \textcolor{orange}{\frac{1}{\cos ^{2} \alpha}}
$$
$$
(\tan \alpha)^{\prime} = \textcolor{orange}{\frac{1}{\cos ^{2} \alpha}}
$$
即:
$$
1 + \tan^{2} \alpha \textcolor{red}{=} (\tan \alpha)^{\prime}
$$
已知函数 $u$ $=$ $u(x)$, $v$ $=$ $v(x)$, 则针对 $(u v)^{\prime}$ 的求导计算公式如下:
$$
(u v)^{\prime} = u^{\prime} v + u v^{\prime}
$$
但是,由于一些原因,有时候我们可能会无法确定 $(u v)^{\prime}$ 到底是等于 $u^{\prime} v$ $\textcolor{orange}{+}$ $u v^{\prime}$ 还是等于 $u^{\prime} v$ $\textcolor{red}{-}$ $u v^{\prime}$
继续阅读“用一个小技巧牢记求导公式 $(u v)^{\prime}$ $=$ $u^{\prime} v$ $+$ $u v^{\prime}$”$$
\Bigg[ \int_{x}^{y} f(x+y – t) \mathrm{d} t \Bigg]^{\prime}_{x} = ?
$$
$$
\Bigg[ \int_{x}^{y} f(x+y – t) \mathrm{d} t \Bigg]^{\prime}_{y} = ?
$$
继续阅读“变限积分被积函数中同时含有积分上下限该求导?”补充资料:
[1]. 多种形式的变限积分求导方法总结.
已知,有 $u(x, y)$ $=$ $u(\sqrt{x^{2} + y^{2}})$, $r$ $=$ $\sqrt{x^{2} + y^{2}}$ $>$ $0$.
并且已知函数 $u(x, y)$ 有二阶连续的偏导数,要求计算:
$\frac{\partial u}{\partial x}$、$\frac{\partial ^{2} u}{\partial x^{2}}$、$\frac{\partial u}{\partial y}$、$\frac{\partial ^{2} u}{\partial y^{2}}$.
继续阅读“一个复合函数求二阶偏导的例题:$u(x, y)$ $=$ $u(\sqrt{x^{2} + y^{2}})$”