问题
已知,有两个向量 $\textcolor{orange}{\alpha_{1}}$ 和 $\textcolor{orange}{\alpha_{2}}$ 是 线 性 相 关 的,则在 几 何 意 义 上,这两个向量是否 共 线 ?选项
[A]. 不确定[B]. 不是
[C]. 是
且有如下等式:
$\textcolor{orange}{k_{1} \boldsymbol{\alpha}_{1}}$ $\textcolor{orange}{+}$ $\textcolor{orange}{k_{2} \boldsymbol{\alpha}_{2}}$ $\textcolor{orange}{+}$ $\textcolor{orange}{\cdots}$ $\textcolor{orange}{+}$ $\textcolor{orange}{k_{m} \boldsymbol{\alpha}_{m}}$ $\textcolor{orange}{=}$ $\textcolor{orange}{\mathbf{0}}$.
那么,当实数 $\textcolor{cyan}{k_{1}}$, $\textcolor{cyan}{k_{2}}$, $\textcolor{cyan}{\cdots}$, $\textcolor{cyan}{k_{m}}$ 满足 什 么 条 件 时,可以说明向量组 $\boldsymbol{A}:$ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 是 线 性 无 关 的?
且有如下等式:
$\textcolor{orange}{k_{1} \boldsymbol{\alpha}_{1}}$ $\textcolor{orange}{+}$ $\textcolor{orange}{k_{2} \boldsymbol{\alpha}_{2}}$ $\textcolor{orange}{+}$ $\textcolor{orange}{\cdots}$ $\textcolor{orange}{+}$ $\textcolor{orange}{k_{m} \boldsymbol{\alpha}_{m}}$ $\textcolor{orange}{=}$ $\textcolor{orange}{\mathbf{0}}$.
那么,当实数 $\textcolor{cyan}{k_{1}}$, $\textcolor{cyan}{k_{2}}$, $\textcolor{cyan}{\cdots}$, $\textcolor{cyan}{k_{m}}$ 满足 什 么 条 件 时,可以说明向量组 $\boldsymbol{A}:$ $\boldsymbol{\alpha}_{1}$, $\boldsymbol{\alpha}_{2}$, $\cdots$, $\boldsymbol{\alpha}_{m}$ 是 线 性 相 关 的?