前言
在解题过程中,注意使用【变量的对称性】所隐含的性质可以提高解题速度。本文将对此进行一个说明,以作参考。
继续阅读“[高数]使用变量的对称性快速写出有关结论”在对有理函数进行积分的时候,我们常常需要对
注意:上式中的
但是,上述方法在应对分母是无理方程的有理函数积分时就失效了,因为无理方程没有实数解,无法拆分成
其实,无理方程中一般都是“包含着”有理方程的,如果我们能把其中的有理方程“提取”出来,同样可以完成对这类包含无理方程的有理函数的积分。
本文将通过一个例子对此进行分析,以作参考。
注意:本文中提到的“有理方程”和“无理方程”都是【一元二次方程】。
继续阅读“[高数]举例说明如何从无理方程中分解出有理方程”考研数学题中有时会需要计算三次方程的解,这时候,我们可以先将三次方程【分解】成更低阶的一次方程和二次方程的乘积,之后利用相关公式计算。本文将通过一个例子展示这种求解方法,以作参考。
继续阅读“[高数]举例说明特殊情况下如何计算三次方程的解”在解题的过程中,把某些变量,例如 “
数列的收敛与发散问题和函数的极限问题有相似之处,但是,由于数列的离散性,因此,数列的收敛与发散又有着一些特殊的性质。【荒原之梦】通过检索发现,互联网上关于此类问题存在一些错误的分析与结论,存在相当程度的误导性。为了使互联网上多一些理性的分析,本文将简要探讨一下收敛数列与发散数列的若干性质并对这些性质给出一定的解释。
继续阅读“[高数]收敛数列与发散数列”明白二重积分的几何意义对我们更好的理解和掌握高等数学中二重积分的相关题目具有十分重要的意义。在本文中,荒原之梦网将通过形象的图文,清晰明了的阐释清楚二重积分的几何意义,让大家在学习二重积分以及在计算二重积分的相关题目时,更加胸有成竹。
继续阅读“高等数学:二重积分的几何意义解释”