一、题目
设 $f(x, y)$ 是连续函数, 则 $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \mathrm{~d} x \int_{\sin x}^{1} f(x, y) \mathrm{~d} y=(\quad)$
(A) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$
(B) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$
(C) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$
(D) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$
难度评级:
继续阅读“2024年考研数二第06题解析:绘制积分区域,变换积分次序”