这道题用麦克劳林公式(泰勒公式在 x = 0 处的特殊情况)可以很快求解 一、题目 I=limx→0xsinx2−2(1−cosx)sinxx4=? 难度评级: 继续阅读“这道题用麦克劳林公式(泰勒公式在 x = 0 处的特殊情况)可以很快求解”
对矩阵的运算会同步反映到矩阵的特征值上 一、题目 已知 A 是三阶可逆矩阵,λ=2 是 A 的一个特征值,则 13A2−2E 必有特征值() 难度评级: 继续阅读“对矩阵的运算会同步反映到矩阵的特征值上”
求解参数方程所表示曲线指定点处的法线方程 一、题目 曲线 {x=cost+cos2ty=1+sint 在 t=π4 对应的点处的法线方程为() 难度评级: 继续阅读“求解参数方程所表示曲线指定点处的法线方程”
求曲线过某点处的切线:先确定该点是否在曲线上,如果该点不在曲线上,则先求出切点,再求解切线方程 一、题目 曲线 y=ex3 过原点的切线是() 难度评级: 继续阅读“求曲线过某点处的切线:先确定该点是否在曲线上,如果该点不在曲线上,则先求出切点,再求解切线方程”
寻找第二类可去间断点的重点步骤是找出所有可能的间断点并对这些点左右两侧的极限分别进行计算 一、题目 函数 f(x)=|sinx|x2−πxe1x−1 有多少个第二类间断点? 难度评级: 继续阅读“寻找第二类可去间断点的重点步骤是找出所有可能的间断点并对这些点左右两侧的极限分别进行计算”
间断点不一定是不存在的点:间断点也可能是存在的,比如跳跃间断点 一、题目 已知,函数 f(x) = limn→∞x2+nx(1−x)sin2πx1+nsin2πx, 则 f(x) 的间断点是() 难度评级: 继续阅读“间断点不一定是不存在的点:间断点也可能是存在的,比如跳跃间断点”
同阶无穷小:次幂相等,系数可以不相等 一、题目 当 x→0 时,下列无穷小与 x3 为同阶无穷小的是哪一个? (A) x3+x2. (B) 1−cosxx. (C) ∫0ln(1+x)(et2−1)dt. (D) (1+sinx)ln(1+x)−1. 难度评级: 继续阅读“同阶无穷小:次幂相等,系数可以不相等”
当变量趋于无穷大时,我们可以尝试提取出式子中共同的部分(抽离无穷大),或许就可以得到无穷小量 一、题目 已知 0<α<β, 则 (n+1)α−nαnβ 当 n→∞ 时是 1n 的()阶无穷小? 难度评级: 继续阅读“当变量趋于无穷大时,我们可以尝试提取出式子中共同的部分(抽离无穷大),或许就可以得到无穷小量”
一定要看清楚哦:这道题的变量不是趋于零的 一、题目 已知 a≠nπ(n 为整数), 则 limx→a(sinxsina)asinx−sina=? 难度评级: 继续阅读“一定要看清楚哦:这道题的变量不是趋于零的”
如果分式的极限存在,则一定是“0/0”型或者“无穷/无穷”型 一、题目 若 I=limx→0sinxex2−a(cosx−b)=A, 则,a=?, b=?, A=? 难度评级: 继续阅读“如果分式的极限存在,则一定是“0/0”型或者“无穷/无穷”型”
极限型函数求间断点:先求出具体表达式 一、题目 已知函数 f(x)=limn→∞xn+222n+x2n, 则函数 f(x) 在其定义域内有无间断点?如果有间断点,是什么类型的间断点? 难度评级: 继续阅读“极限型函数求间断点:先求出具体表达式”
只要没说处处可导就只能用一点处导数的定义 一、题目 已知 f(x) 对任意 x 均满足 f(1+x)=af(x), 且 f′(0)=b, 其中 a 与 b 都是常数,则 f(x) 在 x=1 处是否可导? 难度评级: 继续阅读“只要没说处处可导就只能用一点处导数的定义”