用定积分的定义证明两个定积分的常用性质

一、题目题目 - 荒原之梦

请证明下面的定积分的性质:

$$
\begin{aligned}
\int_{a}^{b} 1 \mathrm{~d} x = & \ b – a \\
\int_{a}^{b} k f(x) \mathrm{~d} x = & \ k \int_{a}^{b} f(x) \mathrm{~d} x
\end{aligned}
$$

难度评级:

继续阅读“用定积分的定义证明两个定积分的常用性质”

利用定积分的定义计算两个简单的定积分

一、题目题目 - 荒原之梦

定积分的定义是考研数学中经常考察的一个内容。但是,在真正的考试题中,我们能遇到的要使用定积分的定义求解的题目,一般是不能用一般的积分公式计算的,这样的题目不利于我们从更多的角度把握用定积分的定义解题这一方法的全貌。

所以,在本文中,「荒原之梦考研数学」将利用定积分的定义,给同学们演示对下面这两个比较简单的定积分进行求解的过程:

$$
\begin{aligned}
I_{1} = & \int_{0}^{1} \mathrm{e}^{x} \mathrm{~d} x \\ \\
I_{2} = & \int_{1}^{2} \frac{1}{x} \mathrm{~d} x
\end{aligned}
$$

难度评级:

继续阅读“利用定积分的定义计算两个简单的定积分”

遇到比较绕的题目,最好的办法就是先将其翻译成纯粹的数学语言

一、题目题目 - 荒原之梦

已知 $f(x)$ 的一个原函数为 $\frac{\cos x}{x}$, 则:

$$
I = \int x f ^{\prime} (x) \mathrm{~d} x
$$

难度评级:

继续阅读“遇到比较绕的题目,最好的办法就是先将其翻译成纯粹的数学语言”

收敛的数项级数的项会越来越小,但项越来越小的数项级数不一定收敛

一、题目题目 - 荒原之梦

下面的数项级数是收敛还是发散?

$$
\sum_{n = 1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \cdots
$$

难度评级:

继续阅读“收敛的数项级数的项会越来越小,但项越来越小的数项级数不一定收敛”

关于 $y$ $=$ $x$ 对称的二元函数的二阶偏导数也关于 $y$ $=$ $x$ 对称

一、题目题目 - 荒原之梦

难度评级:

继续阅读“关于 $y$ $=$ $x$ 对称的二元函数的二阶偏导数也关于 $y$ $=$ $x$ 对称”

对一般的对数函数求导的时候,通常可以先转为自然对数

一、题目题目 - 荒原之梦

难度评级:

继续阅读“对一般的对数函数求导的时候,通常可以先转为自然对数”

这道题目看似很简单,但全身都是“坑”

一、题目题目 - 荒原之梦

已知,函数 $f (x)$ 连续,且:

$$
\lim_{ x \rightarrow 0 } \frac{ \ln( 1+2x ) + x f(x)} {x^{2}} = 3
$$

则:

$$
\lim_{ x \rightarrow 0 } \frac{ 2+f(x) }{x} = ?
$$

难度评级:

继续阅读“这道题目看似很简单,但全身都是“坑””

封闭曲线的弧长不一定是周长

一、题目题目 - 荒原之梦

有时候,曲线 $r(\theta)$ 的极坐标方程也写作:$r(\theta)$ $=$ $\sin ^{3} \frac{\theta}{3}$.

难度评级:

继续阅读“封闭曲线的弧长不一定是周长”

如果不能完全去掉根号,也要想办法把根号“挤”到分子上

一、题目题目 - 荒原之梦

$$
\begin{aligned}
& I = \\ \\
& \lim_{ x \rightarrow + \infty } \left[ \sqrt[3]{x^{3} + x^{2} + x + 1 } – \frac{ \ln \left( \mathrm{e}^{x} + x \right) }{x} \times \sqrt{x^{2} + x + 1 } \right] \\ \\
& = ?
\end{aligned}
$$

难度评级:

继续阅读“如果不能完全去掉根号,也要想办法把根号“挤”到分子上”

在计算的时候尽可能将除法转换为乘法:乘法比除法更方便计算

一、题目题目 - 荒原之梦

难度评级:

继续阅读“在计算的时候尽可能将除法转换为乘法:乘法比除法更方便计算”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress