抛物线的标准方程(03-A001)

问题

下面【抛物线的标准方程】,正确的是哪个?

设该抛物线的焦点到准线的距离为 $p$ 且焦点位于 [$y$ 轴的正半轴], 焦点坐标为 $(0, \frac{p}{2})$, 准线方程为 $y =$ $\frac{-p}{2}$, 其中 $p > 0$.

选项

[A].   $x^{2} =$ $-py$

[B].   $x^{2} =$ $py$

[C].   $x^{2} =$ $-2py$

[D].   $x^{2} =$ $2py$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$x^{2} =$ $2py$

抛物线的标准方程(02-A001)

问题

下面【抛物线的标准方程】,正确的是哪个?

设该抛物线的焦点到准线的距离为 $p$ 且焦点位于 [$x$ 轴的负半轴], 焦点坐标为 $(\frac{-p}{2}, 0)$, 准线方程为 $x =$ $\frac{p}{2}$, 其中 $p > 0$.

选项

[A].   $y^{2} =$ $-px$

[B].   $y^{2} =$ $2px$

[C].   $y^{2} =$ $-2px$

[D].   $y^{2} =$ $px$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$y^{2} =$ $-2px$

抛物线的标准方程(01-A001)

问题

下面【抛物线的标准方程】,正确的是哪个?

设该抛物线的焦点到准线的距离为 $p$ 且焦点位于 [$x$ 轴的正半轴], 焦点坐标为 $(\frac{p}{2}, 0)$, 准线方程为 $x =$ $\frac{-p}{2}$, 其中 $p > 0$.

选项

[A].   $y^{2} =$ $-px$

[B].   $y^{2} =$ $px$

[C].   $y^{2} =$ $-2px$

[D].   $y^{2} =$ $2px$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$y^{2} =$ $2px$

双曲线的标准方程(02-A001)

问题

下面【双曲线的标准方程】,正确的是哪个?

设该双曲线的焦点在 $y$ 轴上,实半轴的长度为 $b$, 虚半轴的长度为 $a$, 且 $a > 0$, $b > 0$.

选项

[A].   $\frac{y^{2}}{b^{2}} +$ $\frac{x^{2}}{a^{2}} =$ $-1$

[B].   $\frac{y^{2}}{a^{2}} -$ $\frac{x^{2}}{b^{2}} =$ $1$

[C].   $\frac{y^{2}}{b^{2}} +$ $\frac{x^{2}}{a^{2}} =$ $1$

[D].   $\frac{y^{2}}{b^{2}} -$ $\frac{x^{2}}{a^{2}} =$ $1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{y^{2}}{b^{2}} -$ $\frac{x^{2}}{a^{2}} =$ $1$

双曲线的标准方程(01-A001)

问题

下面【双曲线的标准方程】,正确的是哪个?

设该双曲线的焦点在 $x$ 轴上,实半轴的长度为 $a$, 虚半轴的长度为 $b$, 且 $a > 0$, $b > 0$.

选项

[A].   $\frac{x^{2}}{a^{2}} -$ $\frac{y^{2}}{b^{2}} =$ $1$

[B].   $\frac{x^{2}}{a^{2}} +$ $\frac{y^{2}}{b^{2}} =$ $-1$

[C].   $\frac{x^{2}}{b^{2}} -$ $\frac{y^{2}}{a^{2}} =$ $1$

[D].   $\frac{x^{2}}{a^{2}} +$ $\frac{y^{2}}{b^{2}} =$ $1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{x^{2}}{a^{2}} -$ $\frac{y^{2}}{b^{2}} =$ $1$

椭圆的标准方程(02-A001)

问题

下面【椭圆的标准方程】,正确的是哪个?

设该椭圆的焦点在 $y$ 轴上,半长轴为 $a$, 半短轴为 $b$, 且 $a >$ $b >$ $0$.

选项

[A].   $\frac{y^{2}}{a^{2}} +$ $\frac{x^{2}}{b^{2}} =$ $1$

[B].   $\frac{y^{2}}{a^{2}} +$ $\frac{x^{2}}{b^{2}} =$ $-1$

[C].   $\frac{y^{2}}{a} +$ $\frac{x^{2}}{b} =$ $1$

[D].   $\frac{y^{2}}{a^{2}} -$ $\frac{x^{2}}{b^{2}} =$ $1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{y^{2}}{a^{2}} +$ $\frac{x^{2}}{b^{2}} =$ $1$

椭圆的标准方程(01-A001)

问题

下面【椭圆的标准方程】,正确的是哪个?

设该椭圆的焦点在 $x$ 轴上,半长轴为 $a$, 半短轴为 $b$, 且 $a > b > 0$.

选项

[A].   $\frac{x^{2}}{a} +$ $\frac{y^{2}}{b} =$ $1$

[B].   $\frac{x^{2}}{a^{2}} -$ $\frac{y^{2}}{b^{2}} =$ $1$

[C].   $\frac{x^{2}}{a^{2}} +$ $\frac{y^{2}}{b^{2}} =$ $-1$

[D].   $\frac{x^{2}}{a^{2}} +$ $\frac{y^{2}}{b^{2}} =$ $1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{x^{2}}{a^{2}} +$ $\frac{y^{2}}{b^{2}} =$ $1$

圆的参数方程(A001)

问题

下面【圆的参数方程】,正确的是哪个?

设该圆的圆心坐标为 $(a, b)$, 半径为 $r$.

选项

[A].   $\begin{cases} & x = a – r \cos \theta \\ & y = b – r \sin \theta \end{cases}$

[B].   $\begin{cases} & x = a + r \cos \theta \\ & y = b + r \sin \theta \end{cases}$

[C].   $\begin{cases} & x = a + r \sin \theta \\ & y = b + r \cos \theta \end{cases}$

[D].   $\begin{cases} & x = b + r \cos \theta \\ & y = a + r \sin \theta \end{cases}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\begin{cases} & x = a + r \cos \theta \\ & y = b + r \sin \theta \end{cases}$

圆的标准方程(A001)

问题

下面【圆的标准方程】,正确的是哪个?

设该圆的圆心坐标为 $(a,b)$, 半径为 $r$.

选项

[A].   $(x+a)^{2} -$ $(y+b)^{2} =$ $r^{2}$

[B].   $(x-a)^{2} +$ $(y-b)^{2} =$ $r^{3}$

[C].   $(x-a)^{2} +$ $(y-b)^{2} =$ $r$

[D].   $(x-a)^{2} +$ $(y-b)^{2} =$ $r^{2}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(x-a)^{2} +$ $(y-b)^{2} =$ $r^{2}$

平面直线的两点式方程(A001)

问题

下面【平面直线的两点式方程】,正确的是哪个?

设该平面直线过 $(x_{1}, y_{1})$ 和 $(x_{2}, y_{2})$ 两个点,且 $x_{1} \neq$ $x_{2}$, $y_{1} \neq$ $y_{2}$.
注:该方程仅适用于不垂直于 $x$ 轴或 $y$ 轴的直线.

选项

[A].   $\frac{y – y_{1}}{y_{2} + y_{1}} =$ $\frac{x – x_{1}}{x_{2} + x_{1}}$

[B].   $\frac{y + y_{1}}{y_{2} – y_{1}} =$ $\frac{x + x_{1}}{x_{2} – x_{1}}$

[C].   $\frac{y – y_{1}}{y_{2} – y_{1}} =$ $\frac{x – x_{1}}{x_{2} – x_{1}}$

[D].   $\frac{y – y_{1}}{y – y_{2}} =$ $\frac{x – x_{1}}{x – x_{2}}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{y – y_{1}}{y_{2} – y_{1}} =$ $\frac{x – x_{1}}{x_{2} – x_{1}}$

平面直线的斜截式方程(A001)

问题

下面【平面直线的斜截式方程】,正确的是哪个?

设该平面直线的斜率为 $k$, 在 $y$ 轴上形成的截距为 $b$.
注:该方程仅适用于不和 $x$ 轴垂直的直线.

选项

[A].   $y =$ $kx +$ $k$

[B].   $y =$ $bx +$ $k$

[C].   $y =$ $kx +$ $b$

[D].   $y =$ $kx -$ $b$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$y =$ $kx +$ $b$

平面直线的截距式方程(A001)

问题

下面【平面直线的截距式方程】,正确的是哪个?

设该平面直线在 $x$ 轴上形成的截距为 $a$, 在 $y$ 轴上形成的截距为 $b$.
注:该方程仅适用于不过坐标轴原点,且与 $x$ 轴和 $y$ 轴均相交的直线.

选项

[A].   $\frac{x}{a} +$ $\frac{y}{b} =$ $0$

[B].   $\frac{x}{b} +$ $\frac{y}{a} =$ $1$

[C].   $\frac{x}{a} +$ $\frac{y}{b} =$ $1$

[D].   $\frac{x}{a} +$ $\frac{y}{b} =$ $-1$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\frac{x}{a} +$ $\frac{y}{b} =$ $1$

平面直线的点斜式方程(A001)

问题

下面【平面直线的点斜式方程】,正确的是哪个?

设该平面直线过点 $(x_{0}, y_{0})$, 且斜率为 $k$.
注:该方程仅适用于和 $x$ 轴不垂直的直线.

选项

[A].   $y + y_{0} =$ $k(x + x_{0})$

[B].   $y – y_{0} =$ $k(x – x_{0})$

[C].   $y – x_{0} =$ $k(x – y_{0})$

[D].   $y – y_{0} =$ $\frac{1}{k} (x – x_{0})$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$y – y_{0} =$ $k(x – x_{0})$

两点之间的距离公式(A001)

问题

下面【两点之间的距离】公式,正确的是哪个?

设点 $A$ 的坐标为 $(x_{1}, y_{1})$, 点 $B$ 的坐标为 $(x_{2}, y_{2})$, $d_{AB}$ 表示 $A$ 和 $B$ 两点之间的距离.

选项

[A].   $d_{AB} =$ $\sqrt{(x_{1} + x_{2})^{2} – (y_{1} + y_{2})^{2}}$

[B].   $d_{AB} =$ $\sqrt{(x_{1} – x_{2})^{2} – (y_{1} – y_{2})^{2}}$

[C].   $d_{AB} =$ $\sqrt{(x_{1} – x_{2})^{3} + (y_{1} – y_{2})^{3}}$

[D].   $d_{AB} =$ $\sqrt{(x_{1} – x_{2})^{2} + (y_{1} – y_{2})^{2}}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$d_{AB} =$ $\sqrt{(x_{1} – x_{2})^{2} + (y_{1} – y_{2})^{2}}$

二项式定理公式(A001)

问题

下面的二项式定理公式中,正确的是哪个?

选项

[A].   $(a + b)^{n} =$ $C_{n}^{0} a^{n – 0} \cdot b^{0} +$ $C_{n}^{1} a^{n-1} \cdot b^{1} +$ $C_{n}^{2} a^{n-2} \cdot b^{2} +$ $C_{n}^{3} a^{n-3} \cdot b^{3} +$ $\cdots +$ $C_{n}^{k} a^{n-k} \cdot b^{k} +$ $\cdots +$ $C_{n}^{n} a^{n-n} \cdot b^{n} =$ $\sum_{k=0}^{n} C_{n}^{k} a^{n – k} \cdot b^{k}$

[B].   $(a + b)^{n} =$ $C_{n}^{0} a^{n – 0} \cdot b^{0} +$ $C_{n}^{1} a^{n-1} \cdot b^{1} +$ $C_{n}^{2} a^{n-2} \cdot b^{2} +$ $C_{n}^{3} a^{n-3} \cdot b^{3} +$ $\cdots +$ $C_{n}^{k} a^{n-k} \cdot b^{k} +$ $\cdots +$ $C_{n}^{n} a^{n-n} \cdot b^{n} =$ $\sum_{k=0}^{n} C_{n}^{k} a^{n + k} \cdot b^{k}$

[C].   $(a + b)^{n} =$ $C_{n}^{0} a^{n – 0} \cdot b^{0} +$ $C_{n}^{1} a^{n-1} \cdot b^{1} +$ $C_{n}^{2} a^{n-2} \cdot b^{2} +$ $C_{n}^{3} a^{n-3} \cdot b^{3} +$ $\cdots +$ $C_{n}^{k} a^{n-k} \cdot b^{k} +$ $\cdots +$ $C_{n}^{n-1} a^{n-n} \cdot b^{n-1} =$ $\sum_{k=0}^{n} C_{n}^{k} a^{n – k} \cdot b^{k}$

[D].   $(a + b)^{n} =$ $C_{n}^{1} a^{n-1} \cdot b^{1} +$ $C_{n}^{2} a^{n-2} \cdot b^{2} +$ $C_{n}^{3} a^{n-3} \cdot b^{3} +$ $\cdots +$ $C_{n}^{k} a^{n-k} \cdot b^{k} +$ $\cdots +$ $C_{n}^{n} a^{n-n} \cdot b^{n} =$ $\sum_{k=0}^{n} C_{n}^{k} a^{n – k} \cdot b^{k}$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$(a + b)^{n} =$ $C_{n}^{0} a^{n – 0} \cdot b^{0} +$ $C_{n}^{1} a^{n-1} \cdot b^{1} +$ $C_{n}^{2} a^{n-2} \cdot b^{2} +$ $C_{n}^{3} a^{n-3} \cdot b^{3} +$ $\cdots +$ $C_{n}^{k} a^{n-k} \cdot b^{k} +$ $\cdots +$ $C_{n}^{n} a^{n-n} \cdot b^{n} =$ $\sum_{k=0}^{n} C_{n}^{k} a^{n – k} \cdot b^{k}$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress