题目
编号:A2016205
设函数 $f_{i}(x) (i=1,2)$ 具有二阶连续导数,且 $f_{i}^{”}(x_{0}) < 0 (i=1,2)$. 若两条曲线 $y=f_{i}(x) (i=1,2)$ 在点 $(x_{0}, y_{0})$ 处具有公切线 $y=g(x)$, 且在该点处曲线 $y=f_{1}(x)$ 的曲率大于 $y=f_{2}(x)$ 的曲率,则在 $x_{0}$ 的某个邻域内,有 $?$
$$
A. f_{1}(x) \leqslant f_{2}(x) \leqslant g(x)
$$
$$
B. f_{2}(x) \leqslant f_{1}(x) \leqslant g(x)
$$
$$
C. f_{1}(x) \leqslant g(x) \leqslant f_{2}(x)
$$
$$
D. f_{2}(x) \leqslant g(x) \leqslant f_{1}(x)
$$