一、题目
已知矩阵 $\boldsymbol{A}$ $=$ $\begin{bmatrix}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{bmatrix}$, $\boldsymbol{B}$ $=$ $\begin{bmatrix}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}$, $\boldsymbol{C}$ $=$ $\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{bmatrix}$, 则 $?$
A. $\boldsymbol{A}$ 与 $\boldsymbol{C}$ 相似,$\boldsymbol{B}$ 与 $\boldsymbol{C}$ 相似
B. $\boldsymbol{A}$ 与 $\boldsymbol{C}$ 相似,$\boldsymbol{B}$ 与 $\boldsymbol{C}$ 不相似
C. $\boldsymbol{A}$ 与 $\boldsymbol{C}$ 不相似,$\boldsymbol{B}$ 与 $\boldsymbol{C}$ 相似
D. $\boldsymbol{A}$ 与 $\boldsymbol{C}$ 不相似,$\boldsymbol{B}$ 与 $\boldsymbol{C}$ 不相似
继续阅读“2017年考研数二第08题解析:相似矩阵”