一、结论
首先是本文的结论:
$$
\tan (\arcsin x) = \frac{x}{\sqrt{1 – x ^{2}}}
$$
接下来,「荒原之梦考研数学 | zhaokaifeng.com」将给出有关上面这个结论的详细证明过程。
首先是本文的结论:
$$
\tan (\arcsin x) = \frac{x}{\sqrt{1 – x ^{2}}}
$$
接下来,「荒原之梦考研数学 | zhaokaifeng.com」将给出有关上面这个结论的详细证明过程。
已知,当 $x \rightarrow 0$ 时,$\frac{\cos x – 1}{1 – \sin x}$ $=$ $a x$ $+$ $b x ^{2}$ $+$ $c x ^{3}$ $+$ $o(x ^{3})$, 则:
$$
\begin{cases}
a = ? \\
b = ? \\
c = ?
\end{cases}
$$
难度评级:
继续阅读“在计算的时候尽可能将除法转换为乘法:乘法比除法更方便计算”已知,$\boldsymbol{A}$ 和 $\boldsymbol{B}$ 为 $n$ 阶方阵,且:
$$
(\boldsymbol{AB}) ^{2} = \boldsymbol{E}
$$
则下列结论中,一定正确为( )
① $\boldsymbol{BAB}$ $=$ $\boldsymbol{A}^{-1}$
② $\boldsymbol{ABA}$ $=$ $\boldsymbol{B}^{-1}$
③ $(\boldsymbol{BA}) ^{2}$ $=$ $\boldsymbol{E}$
④ $\boldsymbol{A} ^{2} \boldsymbol{B} ^{2}$ $=$ $\boldsymbol{E}$
难度评级:
继续阅读“矩阵乘法的次幂是不能放到括号里面的:即便他们相乘得单位矩阵”$$
\begin{aligned}
I & = \\ \\
& \int_{1}^{+\infty} \frac{1}{e ^{x+3} + e ^{5-x}} \mathrm{~d} x \\ \\
& = ?
\end{aligned}
$$
难度评级:
继续阅读“积分式子中相似的部分越多越容易计算,但有时候需要我们拨开“云雾””若 $f(x)$ $+$ $\sin ^{6} x$ $=$ $\int_{0}^{\frac{\pi}{6}} f(3x) \mathrm{~d} x$, 则:
$$
\int_{0}^{\frac{\pi}{2}} f(x) \mathrm{~d} x = ?
$$
难度评级:
继续阅读“这道题为啥要设 t=3x 而不是 t=2x ?”设函数 $f(t)$ 连续,令 $F(x, y)$ $=$ $\int_{0}^ {x-y}(x-y-t) f(t)\mathrm {~d} t$, 则( )
A. $\frac { \partial F } { \partial x }$ $=$ $\frac { \partial F } { \partial y }$, $\frac { \partial ^ { 2 } F } { \partial x ^ { 2 } }$ $=$ $\frac { \partial ^ { 2 } F } { \partial y ^ { 2 } }$
B. $\frac { \partial F } { \partial x }$ $=$ $\frac { \partial F } { \partial y }$, $\frac { \partial ^ { 2 } F } { \partial x ^ { 2 } }$ $=$ $- \frac { \partial ^ { 2 } F } { \partial y ^ { 2 } }$
C. $\frac { \partial F } { \partial x }$ $=$ $- \frac { \partial F } { \partial y }$, $\frac { \partial ^ { 2 } F } { \partial x ^ { 2 } }$ $=$ $\frac { \partial ^ { 2 } F } { \partial y ^ { 2 } }$
D. $\frac { \partial F } { \partial x }$ $=$ $- \frac { \partial F } { \partial y }$, $\frac { \partial ^ { 2 } F } { \partial x ^ { 2 } }$ $=$ $- \frac { \partial ^ { 2 } F } { \partial y ^ { 2 } }$
难度评级:
继续阅读“2022考研数二第04题解析:二元偏导数、变上限积分求导”设函数 $f(x)$ 在 $x$ $=$ $x_{0}$ 处有 $2$ 阶导数,则:
[A]. 当 $f(x)$ 在 $x_{0}$ 的某邻域内单调增加时,$f^{\prime} \left( x _{ 0 } \right)$ $>$ $0$
[B]. 当 $f^{\prime} \left( x_{0} \right)$ $>$ $0$ 时,$f(x)$ 在 $x_{0}$ 的某邻域内单调增加
[C]. 当 $f(x)$ 在 $x_{0}$ 的某邻域内是凹函数时,$f^{\prime \prime} \left( x_{0} \right)$ $>$ $0$
[D]. 当 $f^{\prime \prime} \left( x_{0} \right)$ $>$ $0$, $f(x)$ 在 $x_{0}$ 的某邻域内是凹函数
难度评级:
继续阅读“2022考研数二第03题解析:邻域内函数单调性与凹凸性的判断”$$
\int _{ 0 } ^ { 2 } \mathrm { ~ d } y \int _{ y } ^ { 2 } \frac { y } { \sqrt { 1 + x ^ { 3 } } } \mathrm{~d} x = ?
$$
A. $\frac { \sqrt { 2 } } { 6 }$
B. $\frac { 1 } { 3 }$
C. $\frac { \sqrt { 2 } } { 3 }$
D. $\frac{2}{3}$
难度评级:
继续阅读“2022考研数二第02题解析:更改积分次序、定积分中的变量替换”当 $x \rightarrow 0$ 时, $\alpha ( x )$, $\beta ( x )$ 是非零无穷小量,给出以下四个命题:
① 若 $\alpha ( x )$ $\sim$ $\beta ( x )$, 则 $\alpha ^ { 2 } ( x )$ $\sim$ $\beta ^ { 2 } ( x )$;
② 若 $\alpha ^ { 2 } ( x )$ $\sim$ $\beta ^ { 2 } ( x )$, 则 $\alpha ( x )$ $\sim$ $\beta ( x )$;
③ 若 $\alpha ( x ) \sim \beta ( x )$, 则 $\alpha ( x )$ $-$ $\beta ( x )$ $=$ $o ( \alpha ( x ) )$;
④ 若 $\alpha ( x ) – \beta ( x )$ $=$ $o ( \alpha ( x ) )$, 则 $\alpha ( x )$ $\sim$ $\beta ( x )$.
其中所有真命题的序号是( )
(A) ① ③
(B) ① ④
(C) ① ③ ④
(D) ② ③ ④
难度评级:
继续阅读“2022考研数二第01题解析:等价无穷小相减会产生更高阶的无穷小,反之也成立”已知 $f ( x )$ 是连续函数, $F ( x )$ 是 $f ( x )$ 的原函数,则以下说法中正确的是哪个?
[A]. 若 $f ( x )$ 是偶函数,则 $F ( x )$ 必是奇函数
[B]. 若 $f ( x )$ 是奇函数,则 $F ( x )$ 必是偶函数
[C]. 若 $f ( x )$ 是周期函数,则$F ( x )$ 必是周期函数
[D]. 若 $f ( x )$ 是单调增函数,则 $F ( x )$ 必是单调增函数
难度评级:
继续阅读“积分一定能改变函数的奇偶性吗?”设数列 $\left\{ x _{ n } \right\}$ 与 $\left\{ y _{ n } \right\}$ 满足 $\lim _{ n \rightarrow \infty } \left\{ x _{ n } y _{ n } \right\}$ $=$ $0$, 则下列说法正确的是哪个?
(A) 若 $\left\{ x _{ n } \right\}$ 发散,则 $\left\{ y _{ n } \right\}$ 必发散
(B) 若 $\frac{1}{x _{ n }}$ 为无穷小量,则 $y _{ n }$ 必为无穷小量
(C) 若 $\left\{ x _{ n } \right\}$ 有界,则 $y _{ n }$ 必为无穷小量
(D) 若 $\left\{ x _{ n } \right\}$ 无界,则 $\left\{ y _{ n } \right\}$ 必有界
难度评级:
继续阅读“有界一定不发散,但有界不一定收敛”在本文中,荒原之梦考研数学将通过图示的方式,给大家阐述清楚数列的有界、发散、收敛这三个概念之间的异同点,方便大家在其他辅导资料中常见的定义和举特例的方式之外,用更加形象的方式理解这三者之间的区别。
继续阅读“图示:数列的有界、发散与收敛间的区别与联系”Tip
在本的示意图中:
zhaokaifeng.com
[1]. 横坐标表示数列的项数 $n$, 从左向右依次增大;
[2]. 纵坐标表示数列的值 $\left\{ x_{n} \right\}$, 从下到上依次增大;
[3]. 同一个坐标系中不同颜色的点对应的项数 $n$ 不相等,但都属于同一个数列 $\left\{ x_{n} \right\}$
$$
I = \lim _{ x \rightarrow 3 } \frac { \textcolor{pink}{ x ^ { 3 } + 2 x ^ { 2 } }} { \textcolor{yellow}{ ( x – 3 ) ^ { 2 } }} = ?
$$
难度评级:
继续阅读“如果倒数的极限等于零,那么原式的极限就是无穷大”已知有数列 $\left\{ x _{ n } \right\}$ 和 $\left\{ y _{ n } \right\}$, 那么,这两个数列的乘积数列 $\left\{ x _{ n } y _{ n } \right\}$ 的敛散性该怎么判断?
在本文中,荒原之梦考研数学就将通过一些例子,给同学们讲明白上述这个问题。
继续阅读“数列乘积极限的相关结论”设函数 $f ( x )$ 在 $[ – a , a ]$ 上具有 $2$ 阶连续导数,证明:
(1) 若 $f ( 0 ) = 0$, 则存在 $\xi \in ( – a , a )$, 使得 $f ^ { \prime \prime } ( \xi )$ $=$ $\frac { 1 } { a ^ { 2 } }$ $[ f ( a ) + f ( – a ) ]$;
(2) 若 $f ( x )$ 在 $( – a , a )$ 内取得极值,则存在 $\eta \in ( – a , a )$, 使得 $\left| f ^ { \prime \prime } ( \eta ) \right|$ $\geq$ $\frac { 1 } { 2 a ^ { 2 } }$ $| f ( a ) – f ( – a ) |$.
难度评级:
继续阅读“2023年考研数二第21题解析:泰勒公式、存在性的理解”