一、题目
已知,数列 ${ x_{n} }$ 满足: $x_{1} > 0$, $x_{n}\mathrm{e}^{x_{n+1}}$ $=$ $\mathrm{e}^{x_{n}}-1$, 其中 $n$ $=$ $1, 2, 3, \cdots$.
请证明数列 ${ x_{n} }$ 收敛,并求解 $\lim_{n \rightarrow \infty}x_{n}$.
难度评级:
继续阅读“对数可以将“指数因子”变成“乘数因子””已知,数列 ${ x_{n} }$ 满足: $x_{1} > 0$, $x_{n}\mathrm{e}^{x_{n+1}}$ $=$ $\mathrm{e}^{x_{n}}-1$, 其中 $n$ $=$ $1, 2, 3, \cdots$.
请证明数列 ${ x_{n} }$ 收敛,并求解 $\lim_{n \rightarrow \infty}x_{n}$.
难度评级:
继续阅读“对数可以将“指数因子”变成“乘数因子””等价无穷小公式是考研数学中一个非常常用的工具。
但是,这些等价无穷小公式都是怎么来的呢?
如果说 $\lim_{x \rightarrow 0} \frac{\alpha(x)}{\beta(x)} = 1$ 就意味着 $\lim_{x \rightarrow 0} \alpha(x)$ 和 $\lim_{x \rightarrow 0} \beta(x)$ 是等价无穷小,但是,为什么式子 $\frac{\lim_{x \rightarrow 0} \alpha(x)}{\lim_{x \rightarrow 0} \beta(x)}$ 就等于 $1$ 呢?
在本文中,「荒原之梦考研数学」将借助“一点处的斜率”这一概念,为同学讲清楚等价无穷小公式的来龙去脉。当然,同学们也可以借助本文中使用的方法,来推导和记忆等价无穷小公式。
继续阅读“等价无穷小的本质:$x = 0$ 处斜率相等”已知 $y = \frac{x}{\ln x}$ 是微分方程 $y ^{\prime} = \frac{y}{x} + \phi \left( \frac{x}{y} \right)$ 的唯一解,则函数 $\phi \left(\frac{x}{y}\right)$ 的显式表达式为 $\underline{\quad \quad \quad}$.
难度评级:
继续阅读“函数的表达式必须由函数的自变量组成”在做一些涉及极限的求和题目时,我们会发现,有些解法就是通过将求和转为积分的方式完成的求解。
那么,为什么极限场景下的求和一般可以表示为积分呢?
在本文中,「荒原之梦考研数学」通过将积分的物理意义从有向的几何量(面积、体积)或者物理意义,更改为“有向权重”的方式,探讨一种更接近积分与求和所蕴含的本质的理解方式,从而理清楚积分与求和之间的关系。
继续阅读“为什么极限场景下的求和一般可以表示为积分?”这里的“有向”是指存在“正”和“负”两种值。与传统上对积分有向面积或者有向体积的定义一样,本文中也将位于二维坐标水平轴或者三维坐标水平面上方的“有向权重”定义为“正”,下方的“有向权重”则定义为“负”——当然,“有向”并不是本文讨论的重点,也不是本文所提出的“权重”的必须性质,所以,在本文中接下来阐述“有向权重”的时候,会侧重于讨论“权重”本身。
用求和符号 $\sum$ 表示的求和运算是一种非常基本运算形式。在本文中,「荒原之梦考研数学」将通过地铁线路的方式,为同学们形象地解释单重求和与双重求和的计算思路。
继续阅读“用地铁线路理解单重求和与双重求和的计算”凑微分的目的就是将积分 $\int \Phi(x) \mathrm{~d} x$ 改写成 $\int f(\phi(x)) \mathrm{~d} \phi(x)$ 的形式,即:
$$
\int \textcolor{orange}{\Phi(x)} \mathrm{~d} x = \int f(\textcolor{lightgreen}{\phi(x)}) \mathrm{~d} \textcolor{lightgreen}{\phi(x)}
$$
经过上述变换,就可以将积分变量从 $x$ 拓展成更复杂的 $\phi(x)$, 从而可以在大多数时候达到简化被积函数的作用。
在本文中,「荒原之梦考研数学」就给同学们汇总了考研数学(高等数学)解题过程中常用的凑微分公式。
继续阅读“常用的凑微分公式汇总”已知函数 $f(x)$ 在 $[0, 1]$ 上具有 $2$ 阶导数,且 $f(0) = 0$, $f(1) = 1$, $\int_{0}^{1} f(x) \mathrm{~d} x = 1$, 证明:
(I) 存在 $\xi \in (0, 1)$, 使得 $f^{\prime}(\xi) = 0$;
(Ⅱ) 存在 $\eta \in (0, 1)$, 使得 $f^{\prime \prime}(\eta) < -2$.
难度评级:
继续阅读“2019年考研数二第21题解析:拉格朗日中值定理、罗尔定理、费马引理、积分的几何意义、反证法(5种解法+18幅图)”已知函数 $f \left( u, v \right)$ 满足 $f \left( x + y, \frac{y}{x} \right) = x^{2} – y^{2}$,则:
$$
\begin{aligned}
& \left. \frac{\partial f}{\partial u} \right|_{\substack{u=1 \\ v=1}} = ? \\ \\
& \left. \frac{\partial f}{\partial v} \right|_{\substack{u=1 \\ v=1}} = ?
\end{aligned}
$$
难度评级:
继续阅读“求复合函数偏导数的两种方式:先求导再代换、先代换再求导”$$
I = \lim_{x \rightarrow 0} \frac{\mathrm{e}^{x}-1 – x-\frac{x}{2} \sin x}{\sin x – x \cos x}
$$
如图 01 所示,$X$ 轴上有一个线密度为常数 $\mu$, 长度为 $l$ 的细杆 $\bar{L}$,若质量为 $m$ 的质点 $\dot{M}$ 到细杆右端的距离为 $a$, 且引力系数为 $k$, 则质点 $\dot{M}$ 和细杆 $\bar{L}$ 之间引力的大小 $F$ 可表示为什么?
判断下面反常积分的敛散性:
$$
\begin{aligned}
I_{1} & = \int_{− \infty}^{0} \frac{1}{x^{2}} \mathrm{e}^{\frac{1}{x}} \mathrm{~d} x \\ \\
I_{2} & = \int_{0}^{+ \infty} \frac{1}{x^{2}} \mathrm {e}^{\frac{1}{x}} \mathrm{~d} x
\end{aligned}
$$