考研数学中需要注意的三种特殊的函数

一、前言 前言 - 荒原之梦

在高等数学(考研数学)中,我们为了判断某些题目,可能需要举一些反例,而在本文中,「荒原之梦考研数学」就给同学们带来三种比较特殊的函数,这些函数也是我们在寻找反例的时候,很容易用上的工具。

继续阅读“考研数学中需要注意的三种特殊的函数”

平均值不等式的详细证明过程

一、前言 前言 - 荒原之梦

已知 x1, x2, , xnn 个非负实数,则其几何平均值 x1×x2××xnn 一定小于或等于其算术平均值 x1+x2++xnn, 即:

x1×x2××xnnx1+x2++xnn x1x2xnnx1+x2++xnn

在本文中,「荒原之梦考研数学」将使用数学归纳法和递推法两种方法为同学们证明上述不等式。

继续阅读“平均值不等式的详细证明过程”

证明:数字的平均值相乘一定不小于每个数字相乘——小数字在乘法中对大数字的“牵制”程度比减法中严重

一、前言 前言 - 荒原之梦

在本文中,「荒原之梦考研数学」将通过数字在乘法和减法中“牵制”能力的区别,简易地证明下式(数字的平均值相乘大于或等于每个数字相乘):

(x1+x2++xnn)nx1×x2××xn

为了更便于理解,同学们可以将本文中的“牵制”理解为“拖累”——小数字对大数字的“拖累”效果在乘法中比在减法中变现更突出。

继续阅读“证明:数字的平均值相乘一定不小于每个数字相乘——小数字在乘法中对大数字的“牵制”程度比减法中严重”

幂指函数的求导策略:什么时候用“e 抬起”?什么时候用“ln 落下”?

一、前言 前言 - 荒原之梦

在本文中,「荒原之梦考研数学」将通过计算下面三个式子的导数 dydx 的方式,给同学们讲清楚在对幂指函数求导时,什么时候用“e 抬起”,什么时候用“ln 落下”:

y= xsinxy= xcosx+xxy= xcosxxsinx

继续阅读“幂指函数的求导策略:什么时候用“e 抬起”?什么时候用“ln 落下”?”

对等式等号两边同时做操作的时候要注意“对等原则”

一、前言 前言 - 荒原之梦

在做题的时候,我们可能需要借助同时在等式的等号两边做某种操作的方式对原式进行变形处理,例如对等号两边同时取对数、同时求导、同时取倒数、同时乘以或者除以某个量等。

但是,在做这些操作的时候,我们必须要注意“对等原则”。所谓“对等原则”,就是等号两边无论各自有多少组成部分,都要以等号为界,分为两个整体,做任何操作,都要以这两个整体为基本单位进行。

接下来,「荒原之梦考研数学」将通过一些实际的例子,给同学们讲清楚这个计算过程中的易错点。

继续阅读“对等式等号两边同时做操作的时候要注意“对等原则””

关于 y = x 对称的二元函数的二阶偏导数也关于 y = x 对称

一、题目题目 - 荒原之梦

难度评级:

继续阅读“关于 y = x 对称的二元函数的二阶偏导数也关于 y = x 对称”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress