一、题目
已知 $\boldsymbol{\eta}_{1}$, $\boldsymbol{\eta}_{2}$, $\boldsymbol{\eta}_{3}$ 均是 $\boldsymbol{A x}$ $=$ $b$ 的解,若 $k_{1} \boldsymbol{\eta}_{1}$ $+$ $k_{2} \boldsymbol{\eta}_{2}$ $+$ $k_{3} \boldsymbol{\eta}_{3}$ 也是 $\boldsymbol{A x}$ $=$ $b$ 的解,则 $k_{1}$, $k_{2}$, $k_{3}$ 应满足:
[A]. $k_{1}$ $+$ $k_{2}$ $+$ $k_{3}$ $=$ $1$
[B]. $k_{1}$ $+$ $k_{2}$ $+$ $k_{3}$ $=$ $3$
[C]. $k_{1}$ $\times$ $k_{2}$ $\times$ $k_{3}$ $=$ $1$
[D]. $k_{1}$ $=$ $1$ 且 $k_{2}$ $=$ $1$ 且 $k_{3}$ $=$ $1$
难度评级:
继续阅读“非齐次线性方程组不同解向量的系数相加等于 1 时,相加所得的向量也是该方程的解”