注意
- 以下公式中所有 $x$ 都可以整体替换成方块 $\square$,也就是说,下面公式中的 $x$ 可以替换成任意包含变量的式子,但要注意的是,要替换则整个式子中的 $x$ 都要统一替换。
- 用不定积分时不要忘记在式子的最后加上常数 $C$.
公式
(1)
$$
\int x^{k}dx = \frac{x^{k+1}}{k+1} + C, (k \neq -1).
$$
扩展:
$$
\int \frac{1}{u^{2}}dx = -\frac{1}{u} + C.
$$
(2)
$$
\int \frac{1}{x}dx = \ln|x|+C.
$$
上式中,由于不确定 $x$ 是否大于 $0$, 而在 $\ln x$ 中,$x$ 必须大于 $0$, 因此这里要加上绝对值。
扩展:
$$
\int \frac{-3}{x-2}dx = -3 \ln |x-2| + C.
$$
(3)
$$
\int a^{x}dx = \frac{a^{x}}{\ln a} + C.
$$
扩展:
$$
\int a^{-x}dx = \frac{a^{-x}}{\ln a} + C.
$$
(4)
$$
\int e^{x}dx = e^{x} + C.
$$
(5)
$$
\int \cos x dx = \sin x + C.
$$
(6)
$$
\int \sin x d x = – \cos x + C.
$$
扩展:
$$
\int \sin k \pi x dx = -\frac{1}{k \pi} \cos k \pi x + C.
$$
(7)
$$
\int \frac{1}{\sin x}dx = \int \csc x dx = \ln |\csc x – \cot x| + C.
$$
(8)
$$
\int \frac{1}{\cos x}dx = \int \sec x dx = \ln |\sec x + \tan x| + C.
$$
(9)
$$
\int \frac{1}{\sin ^{2} x} dx = \int \csc ^{2} x dx = – \cot x + C.
$$
(10)
$$
\int \frac{1}{\cos ^{2} x} dx = \int \sec^{2}x dx = \tan x + C.
$$
(11)
$$
\int \tan x dx = – \ln |\cos x| + C.
$$
(12)
$$
\int \cot x dx = \ln |\sin x| + C.
$$
(13)
$$
\int \sec x \tan x dx = \sec x +C.
$$
(14)
$$
\int \csc x \cot x dx = -\csc x +C.
$$
(15)
$$
\int \frac{1}{a^{2}+x^{2}}dx = \frac{1}{a} \arctan \frac{x}{a} + C.
$$
(16)
$$
\int \frac{1}{1+x^{2}}dx = \arctan x + C.
$$
(17)
$$
\int \frac{x}{1+x^{2}}dx = \frac{1}{2} \ln (1+x^{2}) + C.
$$
(18)
$$
\int \frac{1}{\sqrt{1-x^{2}}}dx = \arcsin x + C.
$$
扩展:
$$
\int \frac{1}{\sqrt{a^{2} – x^{2}}}dx = \arcsin \frac{x}{a} + C.
$$
(19)
$$
\int \frac{1}{1-x^{2}}dx = \frac{1}{2} \ln \left | \frac{1+x}{1-x} \right | + C.
$$
扩展:
$$
\int \frac{1}{a^{2}-x^{2}}dx = \frac{1}{2a} \ln \left |\frac{a+x}{a-x} \right | + C.
$$
(20)
$$
\int \frac{1}{\sqrt{x^{2} \pm a^{2}}}dx = \ln \left | x+\sqrt{x^{2} \pm a^{2}} \right| + C.
$$
EOF