一、题目
已知矩阵 $\boldsymbol{A} = \begin{bmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{bmatrix}$ 与 $\boldsymbol{B} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{bmatrix}$ 相似.
(I) 求 $x$, $y$;
(II) 求可逆矩阵 $\boldsymbol{P}$ 使得 $\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} = \boldsymbol{B}$.
二、解析
第 (I) 问
要求解未知数的值,就要构建等式(求解未知数的取值范围时,构建大于或小于的不等式),而要求解两个未知数的值,就要构建至少两个都包含未知数的两个等式——
根据相似矩阵的性质,我们知道:
- 相似矩阵主对角线上元素的和相等,即 $\mathrm{tr} (\boldsymbol{A})$ $=$ $\mathrm{tr} (\boldsymbol{B})$;
- 相似矩阵对应的行列式相等,即 $\begin{vmatrix}
\boldsymbol{A}
\end{vmatrix}$ $=$ $\begin{vmatrix}
\boldsymbol{B}
\end{vmatrix}$.
因此:
$$
\begin{aligned}
& \begin{cases}
\mathrm{tr} (\boldsymbol{A}) = \mathrm{tr} (\boldsymbol{B}), \\
\begin{vmatrix}
\boldsymbol{A}
\end{vmatrix} = \begin{vmatrix}
\boldsymbol{B}
\end{vmatrix}
\end{cases} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{cases}
-2 + x – 2 = 2 – 1 + y,\\
\boldsymbol{A} = \boldsymbol{B}
\end{cases} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{cases}
A = -2(4-2x), \\
B = -2y
\end{cases} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{springgreen}{ \begin{cases}
x = 3, \\
y = -2.
\end{cases} }
\end{aligned}
$$
第 (Ⅱ) 问
由第 (Ⅰ) 问的结果可知:
$$
\boldsymbol{A} = \begin{bmatrix} -2 & -2 & 1 \\ 2 & 3 & -2 \\ 0 & 0 & -2 \end{bmatrix}, \quad \boldsymbol{B} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}
$$
于是:
$$
\begin{vmatrix}
\boldsymbol{A}
\end{vmatrix} = \begin{vmatrix} -2 & -2 & 1 \\ 2 & 3 & -2 \\ 0 & 0 & -2 \end{vmatrix} = 4 \neq 0 , \quad \begin{vmatrix}
\boldsymbol{B}
\end{vmatrix} = \begin{vmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{vmatrix} = 4 \neq 0
$$
因此可知,矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 都是可逆矩阵,都可以进行相似对角化, 即存在可逆矩阵 $\boldsymbol{P}_{1}$ 和可逆矩阵 $\boldsymbol{P}_{2}$ 使得下面的式子成立:
$$
\textcolor{lightgreen}{
\begin{aligned}
& \boldsymbol{P}_{1}^{-1} \boldsymbol{A} \boldsymbol{P}_{1} = \boldsymbol{\Lambda}_{1} \\ \\
& \boldsymbol{P}_{2}^{-1} \boldsymbol{B} \boldsymbol{P}_{2} = \boldsymbol{\Lambda}_{2}
\end{aligned}
} \tag{1}
$$
其中,矩阵 $\boldsymbol{\Lambda}_{1}$ 是由矩阵 $\boldsymbol{A}$ 的特征值组成的对角矩阵;矩阵 $\boldsymbol{\Lambda}_{2}$ 是由矩阵 $\boldsymbol{B}$ 的特征值组成的对角矩阵.
又根据矩阵相似对角化的性质可知,相似矩阵的对角化所得的矩阵相同,即:
$$
\textcolor{lightgreen}{
\boldsymbol{\Lambda}_{1} = \boldsymbol{\Lambda}_{2}
} \tag{2}
$$
结合上面的 $(1)$ 式和 $(2)$ 式,可知:
$$
\begin{align}
& \boldsymbol{P}_{1}^{-1} \boldsymbol{A} \boldsymbol{P}_{1} = \boldsymbol{P}_{2}^{-1} \boldsymbol{B} \boldsymbol{P}_{2} \notag \\ \notag \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{lightgreen}{ \boldsymbol{P}_{2} \boldsymbol{P}_{1}^{-1} \boldsymbol{A} \boldsymbol{P}_{1} \boldsymbol{P}_{2}^{-1} = \boldsymbol{B} } \tag{3}
\end{align}
$$
又因为 $\left( \boldsymbol{P}_{1} \boldsymbol{P}_{2}^{-1} \right)^{-1}$ $=$ $\boldsymbol{P}_{2} \boldsymbol{P}_{1}^{-1}$, 所以,为了使 $\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} = \boldsymbol{B}$ 成立,可令:
$$
\textcolor{lightgreen}{
\boldsymbol{P} = \boldsymbol{P}_{1} \boldsymbol{P}_{2}^{-1}
} \tag{4}
$$
从上面的分析可知,我们需要分别求解出来矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 相似对角化过程中的可逆矩阵 $\boldsymbol{P}_{1}$ 和可逆矩阵 $\boldsymbol{P}_{2}$.
当然,由于矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 相似,所以矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 的特征值相同,即通过式子 $\begin{vmatrix}
\lambda \boldsymbol{E} – \boldsymbol{B}
\end{vmatrix}$ 求出来的矩阵 $\boldsymbol{B}$ 的特征值,与通过 $\begin{vmatrix}
\lambda \boldsymbol{E} – \boldsymbol{A}
\end{vmatrix}$ 求出来的矩阵 $\boldsymbol{A}$ 的特征值,是一样的.
又因为矩阵 $\boldsymbol{B}$ 是一个上三角矩阵,根据「荒原之梦考研数学」《什么情况下主对角线上的元素就是矩阵的特征值?》这篇文章可知,其主对角线上的元素就是其特征值,因此,矩阵 $\boldsymbol{A}$ 和矩阵 $\boldsymbol{B}$ 的特征值为:
$$
\textcolor{lightgreen}{
\lambda_{1} = -1, \ \lambda_{2} = -2, \ \lambda_{3} = 2
} \tag{5}
$$
接着,根据「荒原之梦考研数学」的《求解矩阵相似对角化中可逆矩阵 P 的步骤》这篇文章可知:
- 对于矩阵 $\boldsymbol{A}$, 有:
- 当 $\lambda_{1} = -1$ 时:
$$
\begin{aligned}
& \left( \boldsymbol{A} – \lambda_{1} \boldsymbol{E} \right) \boldsymbol{\xi}_{1} = 0 \textcolor{lightgreen}{ \leadsto } \left( \boldsymbol{A} + \boldsymbol{E} \right) \boldsymbol{\xi}_{1} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}-1 & -2 & 1 \\ 2 & 4 & -2 \\ 0 & 0 & -1\end{bmatrix} \boldsymbol{\xi}_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{bmatrix} \boldsymbol{\xi}_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{bmatrix} \boldsymbol{\xi}_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{lightgreen}{ \boldsymbol{\xi}_{1} = \begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix} }
\end{aligned}
$$
- 当 $\lambda_{2} = -2$ 时:
$$
\begin{aligned}
& \left( \boldsymbol{A} – \lambda_{2} \boldsymbol{E} \right) \boldsymbol{\xi}_{2} = 0 \textcolor{lightgreen}{ \leadsto } \left( \boldsymbol{A} + 2 \boldsymbol{E} \right) \boldsymbol{\xi}_{2} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix} 0 & -2 & 1 \\ 2 & 5 & -2 \\ 0 & 0 & 0\end{bmatrix} \boldsymbol{\xi}_{2} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}4 & 10 & -4 \\ 0 & -10 & 5 \\ 0 & 0 & 0\end{bmatrix} \boldsymbol{\xi}_{2} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}4 & 0 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0\end{bmatrix} \boldsymbol{\xi}_{2} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{lightgreen}{ \boldsymbol{\xi}_{2} = \begin{bmatrix}
-1 \\
2 \\
4
\end{bmatrix} }
\end{aligned}
$$
- 当 $\lambda_{3} = 2$ 时:
$$
\begin{aligned}
& \left( \boldsymbol{A} – \lambda_{3} \boldsymbol{E} \right) \boldsymbol{\xi}_{3} = 0 \textcolor{lightgreen}{ \leadsto } \left( \boldsymbol{A} – 2 \boldsymbol{E} \right) \boldsymbol{\xi}_{3} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}-4 & -2 & 1 \\ 2 & 1 & -2 \\ 0 & 0 & -4\end{bmatrix} \boldsymbol{\xi}_{3} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}2 & 1 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{bmatrix} \boldsymbol{\xi}_{3} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}2 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{bmatrix} \boldsymbol{\xi}_{3} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{lightgreen}{ \boldsymbol{\xi}_{3} = \begin{bmatrix}
-1 \\
2 \\
0
\end{bmatrix} }
\end{aligned}
$$
接着,令 $\boldsymbol{P}_{1} = \left(\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \boldsymbol{\xi}_{3}\right) = \begin{bmatrix}-2 & -1 & -1 \\ 1 & 2 & 2 \\ 0 & 4 & 0\end{bmatrix}$, 则有:
$$
\textcolor{orange}{
\boldsymbol{P}_{1}^{-1} \boldsymbol{A} \boldsymbol{P}_{1} = \begin{bmatrix}-1 & & \\ & -2 & \\ & & 2\end{bmatrix}
}
$$
- 对于矩阵 $\boldsymbol{B}$, 有:
- 当 $\lambda_{1} = -1$ 时:
$$
\begin{aligned}
& \left( \boldsymbol{B} – \lambda_{1} \boldsymbol{E} \right) \boldsymbol{\Xi}_{1} = 0 \textcolor{lightgreen}{ \leadsto } \left( \boldsymbol{B} + \boldsymbol{E} \right) \boldsymbol{\Xi}_{1} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}3 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{bmatrix} \boldsymbol{\Xi}_{1} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}3 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{bmatrix} \boldsymbol{\Xi}_{1} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{lightgreen}{ \boldsymbol{\Xi}_{1} = \begin{bmatrix}
-1 \\
3 \\
0
\end{bmatrix} }
\end{aligned}
$$
- 当 $\lambda_{2} = -2$ 时:
$$
\begin{aligned}
& \left( \boldsymbol{B} – \lambda_{2} \boldsymbol{E} \right) \boldsymbol{\Xi}_{2} = 0 \textcolor{lightgreen}{ \leadsto } \left( \boldsymbol{B} + 2 \boldsymbol{E} \right) \boldsymbol{\Xi}_{2} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}4 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{bmatrix} \boldsymbol{\Xi}_{2} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{bmatrix} \boldsymbol{\Xi}_{2} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{lightgreen}{ \boldsymbol{\Xi}_{2} = \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} }
\end{aligned}
$$
- 当 $\lambda_{3} = 2$ 时:
$$
\begin{aligned}
& \left( \boldsymbol{B} – \lambda_{3} \boldsymbol{E} \right) \boldsymbol{\Xi}_{3} = 0 \textcolor{lightgreen}{ \leadsto } \left( \boldsymbol{B} – 2 \boldsymbol{E} \right) \boldsymbol{\Xi}_{3} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}0 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -4\end{bmatrix} \boldsymbol{\Xi}_{3} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \begin{bmatrix}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{bmatrix} \boldsymbol{\Xi}_{3} = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{lightgreen}{ \boldsymbol{\Xi}_{3} = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} }
\end{aligned}
$$
接着,令 $\boldsymbol{P}_{2} = \left(\Xi_{1}, \Xi_{2}, \Xi_{3}\right)$, 则有:
$$
\textcolor{orange}{
\boldsymbol{P}_{2}^{-1} \boldsymbol{B} \boldsymbol{P}_{2} = \begin{bmatrix}-1 & & \\ & -2 & \\ & & 2\end{bmatrix}
}
$$
综上可知:
$$
\boldsymbol{B} = \boldsymbol{P}_{2} \boldsymbol{P}_{1}^{-1} \boldsymbol{A} \boldsymbol{P}_{1} \boldsymbol{P}_{2}^{-1}
$$
所以:
$$
\textcolor{springgreen}{ \boldsymbol{P} } = \boldsymbol{P}_{1} \boldsymbol{P}_{2}^{-1} = \begin{bmatrix}-2 & -1 & -1 \\ 1 & 2 & 2 \\ 0 & 4 & 0\end{bmatrix}\begin{bmatrix}0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \\ 1 & \frac{1}{3} & 0\end{bmatrix} = \textcolor{springgreen}{ \begin{bmatrix}-1 & -1 & -1 \\ 2 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix} }
$$
在求解矩阵 $\boldsymbol{P}_{1}$ 和矩阵 $\boldsymbol{P}_{2}$ 的时候,$\lambda$ 取值的顺序只要保持一致即可,例如,在求解矩阵 $\boldsymbol{P}_{1}$ 和矩阵 $\boldsymbol{P}_{2}$ 的时候,都使用 $\lambda_{1}$, $\lambda_{3}$, $\lambda_{2}$ 的顺序是可以的,都是用 $\lambda_{2}$, $\lambda_{1}$, $\lambda_{3}$ 的顺序也是可以的.
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。