已知公式
对于自然常数 $\mathrm{e}$, 我们有:
$$
\lim_{x \rightarrow \infty} \left( 1 + \frac{1}{x} \right)^{x} = \mathrm{e}
$$
变形一
题目
已知 $a$ 为正整数,则:
$$
\lim_{x \rightarrow \infty}\left(1 + \frac{1}{x}\right)^{ax} = ?
$$
解析
$$
\begin{aligned}
\left(1 + \frac{1}{x}\right)^{ax} & = \left[\left(1 + \frac{1}{x}\right)^{x}\right]^{a} \\ \\
& = \mathrm{e}^{a}
\end{aligned}
$$
变形二
已知 $a$ 为正整数,则:
$$
\lim_{x \rightarrow 0}(1 + ax)^{\frac{1}{x}} = ?
$$
解析
首先,令 $y = (ax)^{-1}$, 即:
$$
ax = \frac{1}{y}, \ x = \frac{1}{ay}, \ y \rightarrow \infty
$$
于是:
$$
\begin{aligned}
\lim_{x \rightarrow 0} (1 + ax)^{\frac{1}{x}} & = \lim_{y \rightarrow \infty} \left(1 + \frac{1}{y}\right)^{ay} \\ \\
& = \lim_{y \rightarrow \infty} \left[ \left(1 + \frac{1}{y}\right)^{y} \right]^{a} \\ \\
& = \mathrm{e}^{a}
\end{aligned}
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。