一、题目
设 $\boldsymbol{A}$ $=$ $\left[\begin{array}{ccc}2 & 2 & 1 \\ 1 & -2 & 2\end{array}\right]$ 经初等行变换化成阶梯形矩阵 $\boldsymbol{B}$ $=$ $\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 2 & -1\end{array}\right]$, 初等变换 过程如下:
$\boldsymbol{A}=\left[\begin{array}{ccc}
2 & 2 & 1 \\
1 & -2 & 2
\end{array}\right]$ $\rightarrow$ $\left[\begin{array}{ccc}
1 & -2 & 2 \\
2 & 2 & 1
\end{array}\right]$ $\rightarrow$ $\left[\begin{array}{ccc}
1 & -2 & 2 \\
0 & 6 & -3
\end{array}\right]$ $\rightarrow$ $\left[\begin{array}{ccc}
1 & -2 & 2 \\
0 & 2 & -1
\end{array}\right]$ $=$ $\boldsymbol{B}$.
因此,若有可逆阵 $P$, 使得 $P A=B$, 其中 $P=?$
难度评级:
二、解析
由“左行右列”原则可知,变化过程 $\boldsymbol{A}=\left[\begin{array}{ccc}
2 & 2 & 1 \\
1 & -2 & 2
\end{array}\right]$ $\rightarrow$ $\left[\begin{array}{ccc}
1 & -2 & 2 \\
2 & 2 & 1
\end{array}\right]$ $\rightarrow$ $\left[\begin{array}{ccc}
1 & -2 & 2 \\
0 & 6 & -3
\end{array}\right]$ $\rightarrow$ $\left[\begin{array}{ccc}
1 & -2 & 2 \\
0 & 2 & -1
\end{array}\right]$ $=$ $\boldsymbol{B}$ 可以表示为:
$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\rightarrow$ $\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$ $\rightarrow$ $\begin{bmatrix} 0 & 1 \\ \frac{1}{3} & \frac{-2}{3} \end{bmatrix}$.
于是可知:
$$
P = \begin{bmatrix} 0 & 1 \\ \frac{1}{3} & \frac{-2}{3} \end{bmatrix}.
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!