向量可由向量组线性表示的充要条件:所形成的矩阵的秩(C019)

问题

以下哪个选项可以说明向量 $\textcolor{orange}{\boldsymbol{\beta}}$ 和向量组 $\textcolor{yellow}{\boldsymbol{\alpha}_{1}}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{2}}$, $\textcolor{yellow}{\cdots}$, $\textcolor{yellow}{\boldsymbol{\alpha}_{m}}$ 线

选项

[A].   $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $\leqslant$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\beta}\right)$

[B].   $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $\neq$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\beta}\right)$

[C].   $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $=$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\beta}\right)$

[D].   $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $\geqslant$ $\mathrm{r}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\beta}\right)$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$\mathrm{\textcolor{red}{r}}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} \right)$ $=$ $\mathrm{\textcolor{red}{r}}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\textcolor{red}{\beta}}\right)$


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress