通过系数行列式判断线性方程组是否有唯一解(C006)

问题

已知,有线性方程组:
$\left\{\begin{array}{l} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \vdots \\ a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} \end{array}\right.$

其系数行列式为:
$D$ $=$ $\left|\begin{array}{ccc} a_{11} & \cdots & a_{1 n} \\ \vdots & & \vdots \\ a_{n 1} & \cdots & a_{n n} \end{array}\right|$

则,当系数行列式 $D$ 满足什么条件的时候,该线性方程组有唯一解?

选项

[A].   $D$ $=$ $1$

[B].   $D$ $\neq$ $1$

[C].   $D$ $=$ $0$

[D].   $D$ $\neq$ $0$


上一题 - 荒原之梦   答 案   下一题 - 荒原之梦

$D$ $\neq$ $0$