问题
设函数 $f(x)$ 在包含点 $x_{0}$ 的开区间 $(a, b)$ 内具有直到 $n+1$ 阶的导数,则根据【泰勒公式】,对于任意 $x$ $\in$ $(a, b)$, 有 $f(x)$ $=$ $?$说明:选项中的 $R_{n}(x)$ 为余项,在实际计算中一般可以忽略不计.
选项
[A]. $\frac{f(x_{0})}{0!}$ $+$ $\frac{f'(x_{0})}{1!}$ $\cdot$ $(x – x_{0})$ $+$ $\frac{f”(x_{0})}{2!}$ $\cdot$ $(x – x_{0})^{2}$ $+$ $\cdots$ $+$ $\frac{f^{(n+1)}(x_{0})}{(n+1)!}$ $\cdot$ $(x-x_{0})^{n+1}$ $+$ $R_{n}(x).$[B]. $\frac{f'(x_{0})}{1!}$ $\cdot$ $(x – x_{0})$ $+$ $\frac{f”(x_{0})}{2!}$ $\cdot$ $(x – x_{0})^{2}$ $\cdot$ $(x – x_{0})^{2}$ $+$ $\cdots$ $+$ $\frac{f^{(n)}(x_{0})}{n!}$ $\cdot$ $(x-x_{0})^{n}$ $+$ $R_{n}(x).$
[C]. $\frac{f(x_{0})}{0!}$ $+$ $\frac{f'(x_{0})}{1!}$ $\cdot$ $(x – x_{0})$ $+$ $\frac{f”(x_{0})}{2!}$ $\cdot$ $(x – x_{0})^{2}$ $+$ $\cdots$ $+$ $\frac{f^{(n)}(x_{0})}{n!}$ $\cdot$ $(x-x_{0})^{n}$ $+$ $R_{n}(x).$
[D]. $\frac{f(x_{0})}{1!}$ $\cdot$ $(x – x_{0})$ $+$ $\frac{f'(x_{0})}{2!}$ $\cdot$ $(x – x_{0})^{2}$ $+$ $\frac{f”(x_{0})}{3!}$ $\cdot$ $(x – x_{0})^{3}$ $+$ $\cdots$ $+$ $\frac{f^{(n)}(x_{0})}{(n+1)!}$ $\cdot$ $(x-x_{0})^{n+1}$ $+$ $R_{n}(x).$
$f(x)$ $=$ $\sum_{k=0}^{n}$ $\frac{f^{(k)} (x_{0})}{k!}$ $\cdot$ $(x – x_{0})^{k}$ $+$ $R_{n}(x)$ $\color{Red}{\Rightarrow}$
$f(x)$ $=$ $\frac{f(x_{0})}{0!}$ $\cdot$ $(x – x_{0})^{0}$ $+$ $\frac{f'(x_{0})}{1!}$ $\cdot$ $(x – x_{0})$ $+$ $\frac{f”(x_{0})}{2!}$ $\cdot$ $(x – x_{0})^{2}$ $+$ $\cdots$ $+$ $\frac{f^{(n)}(x_{0})}{n!}$ $\cdot$ $(x-x_{0})^{n}$ $+$ $R_{n}(x).$
备注:$0!$ $=$ $1!$ $=$ $x^{0}$ $=$ $1$.