有关三角函数 sin, cos 和 tan 的积分的两个结题思路:化二为一、化一为二

前言

下面这个式子连接了三角函数 $\sin$, $\cos$ 和 $\tan$, 即:

$$
\tan x = \frac{\sin x}{\cos x}
$$

因此,在遇到有关三角函数 $\tan$ 的积分时,我们可以尝试将其化作由三角函数 $\sin$ 和 $\cos$ 组成的等价表达式;类似地,在遇到有关三角函数 $\sin$ 和 $\cos$ 的积分时,我们可以尝试将其化作由三角函数 $\tan$ 组成的等价表达式.

化二为一

已知 $\cos x \neq 0$, 则:

$$
\textcolor{lightgreen}{
\int \frac{\cos x}{\sin x + \cos x} \mathrm{~d} x = ?
}
$$

难度评级:

首先,将被积函数的分子、分母同时除以 $\cos x$, 得:

$$
\begin{aligned}
\textcolor{lightgreen}{ \int \frac{\cos x}{\sin x + \cos x} \mathrm{~d} x } & = \int \frac{\frac{\cos x}{\cos x}}{\frac{\sin x}{\cos x} + \frac{\cos x}{\cos x}} \mathrm{~d} x \\ \\
& = \textcolor{orange}{ \int \frac{1}{\tan x+1} \mathrm{~d} x }
\end{aligned}
$$

接着,令 $t = \tan x$, 则:

$$
\textcolor{pink}{
x = \arctan t, \ \mathrm{d} x = \mathrm{d} \left( \arctan t \right) = \frac{1}{1+ t^{2}}
}
$$

于是:

$$
\begin{aligned}
\textcolor{orange}{ \int \frac{1}{1 + \tan x} \mathrm{~d} x } & = \int \frac{1}{1+t} \mathrm{~d} \left( \arctan t \right) \\ \\
& = \int \textcolor{magenta}{ \frac{1}{1 + t} \cdot \frac{1}{1 + t^{2}} } \mathrm{~d} t \\ \\
& = \textcolor{magenta}{ \frac{1}{2} } \int \left( \textcolor{magenta}{ \frac{1}{1 + t} – \frac{t – 1}{1 + t^{2}} } \right) \mathrm{~d} t \\ \\
& = \frac{1}{2} \int \left( \frac{1}{1 + t} – \frac{t}{1 + t^{2}} + \frac{1}{1 + t^{2}} \right) \mathrm{~d} t \\ \\
& = \frac{1}{2} \left[ \ln \left| 1 + t \right| – \frac{1}{2} \ln \left(1 + t^{2} \right) + \arctan t \right] + C \\ \\
& \leadsto \textcolor{gray}{t = \tan x} \\ \\
& = \frac{1}{2} \left[ \ln \left| 1 + \tan x \right| – \frac{1}{2} \ln \left( 1 + \tan^{2} x \right) + x \right] + C \\ \\
& = \frac{1}{2} \left[ \ln \left| 1 + \tan x \right| – \frac{1}{2} \ln \left(\frac{\cos^{2} x + \sin^{2} x}{\cos^{2} x} \right) + x \right] + C \\ \\
& = \frac{1}{2} \left[ \ln \left| 1 + \tan x \right| – \ln \left(\frac{1}{\cos^{2} x} \right)^{\frac{1}{2}} + x \right] + C \\ \\
& = \frac{1}{2} \left( \ln \left| 1 + \tan x \right| – \ln \left| \sec x \right| + x \right) + C \\ \\
& = \textcolor{lightgreen}{ \frac{1}{2} (\ln \left| \cos x + \sin x \right| + x) + C }
\end{aligned}
$$

其中,$C$ 为任意常数.

当然,由于 $\cot x = \frac{1}{\tan x}$, 所以,对于本题中的积分求解,如果已知 $\sin x \neq 0$, 我们也可以采用分子分母同时除以 $\sin x$ 的方式进行求解:

首先,将原式的分子分母同除以 $\sin x$, 得:

$$
\begin{aligned}
\textcolor{lightgreen}{ \int \frac{\cos x}{\sin x + \cos x} \mathrm{~d} x } & = \int \frac{\frac{\cos x}{\sin x}}{1 + \frac{\cos x}{\sin x}} \mathrm{~d} x \\ \\
& = \textcolor{orange}{ \int \frac{\cot x}{1 + \cot x} \mathrm{~d} x }
\end{aligned}
$$

接着,令 $u = \cot x$, 则:

$$
\textcolor{pink}{
x = \mathrm{arccot} \ u, \ \mathrm{d} x = \mathrm{d} \left( \mathrm{arccot} \ u \right) = \frac{-1}{1 + u^{2}} \mathrm{~d} u
}
$$

于是:

$$
\begin{aligned}
\textcolor{orange}{ \int \frac{\cot x}{1 + \cot x} \mathrm{~d} x } & = \int \frac{u}{1 + u} \mathrm{~d} \left( \mathrm{arccot} \ u \right) \\ \\
& = \int \frac{u}{1 + u} \cdot \frac{-1}{1 + u^{2}} \mathrm{~d} u \\ \\
& = \textcolor{magenta}{ – } \int \textcolor{magenta}{ \frac{u}{(1 + u)(1 + u^{2})} } \mathrm{~d} u \\ \\
& = – \int \left( \frac{\frac{-1}{2}}{1 + u} + \frac{\frac{1}{2} u + \frac{1}{2}}{1 + u^{2}} \right) \mathrm{~d} u \\ \\
& = \int \left( \frac{\frac{1}{2}}{1 + u} – \frac{\frac{1}{2} u + \frac{1}{2}}{1 + u^{2}} \right) \mathrm{~d} u \\ \\
& = \textcolor{magenta}{ \frac{1}{2} } \int \left( \textcolor{magenta}{ \frac{1}{1 + u} – \frac{u + 1}{1 + u^{2}} } \right) \mathrm{~d} u \\ \\
& = \frac{1}{2} \int \frac{1}{1 + u} \mathrm{~d} u – \frac{1}{2} \int \frac{u}{1 + u^{2}} \mathrm{~d} u – \frac{1}{2} \int \frac{1}{1 + u^{2}} \mathrm{~d} u \\ \\
& = \frac{1}{2} \ln \left| 1 + u \right| – \frac{1}{2} \cdot \frac{1}{2} \ln(1 + u^{2}) – \frac{1}{2} \arctan u + C \\ \\
& = \frac{1}{2} \ln \left| 1 + u \right| – \frac{1}{4} \ln(1 + u^{2}) – \frac{1}{2} \arctan u + C \\ \\
& \leadsto \textcolor{gray}{u = \cot x} \\ \\
& = \textcolor{tan}{ \frac{1}{2} \ln \left| 1 + \cot x \right| – \frac{1}{4} \ln(1 + \cot^{2} x) – \frac{1}{2} \arctan \left( \cot x \right) + C }
\end{aligned}
$$

又因为:

$$
\begin{aligned}
\textcolor{tan}{ \frac{1}{2} \ln \left| 1 + \cot x \right| } & = \frac{1}{2} \ln \left| \frac{\sin x + \cos x}{\sin x} \right| \\ \\ & = \textcolor{orangered}{ \frac{1}{2} \left( \ln\left| \sin x + \cos x \right| – \ln \sin x \right) } \\ \\
\textcolor{tan}{ \frac{-1}{4} \ln \left(1 + \cot^{2} x \right) } & = \frac{-1}{4} \ln \left( \frac{\sin^{2} x + \cos^{2} x}{\sin^{2} x} \right) \\ \\ & = \frac{-1}{4} \ln \left( \frac{1}{\sin^{2} x} \right) \\ \\ & = \frac{-1}{4} \ln \left( \sin x \right)^{-2} \\ \\ & = \frac{-1}{4} \cdot \left(-2 \ln \sin x \right) \\ \\ & = \textcolor{orangered}{ \frac{1}{2} \ln \sin x }
\end{aligned}
$$

同时,当 $x \in (0, \pi)$ 时,$\cot x = \tan \left( \frac{\pi}{2} – x \right)$, 所以:

$$
\begin{aligned}
\textcolor{tan}{ \frac{-1}{2} \arctan \left(\cot x \right) } & = \frac{-1}{2} \arctan \left[ \tan \left( \frac{\pi}{2} – x \right) \right] \\ \\
& = \frac{-1}{2} \left( \frac{\pi}{2} – x \right) \\ \\
& = \textcolor{orangered}{ \frac{x}{2} – \frac{\pi}{4} }
\end{aligned}
$$

综上可得:

$$
\begin{aligned}
& \textcolor{lightgreen}{ \int \frac{\cos x}{\sin x + \cos x} \mathrm{~d} x } \\ \\
& = \textcolor{tan}{ \frac{1}{2} \ln \left| 1 + \cot x \right| – \frac{1}{4} \ln(1 + \cot^{2} x) – \frac{1}{2} \arctan \left( \cot x \right) + C } \\ \\
& = \textcolor{orangered}{ \frac{1}{2} \left( \ln \left| \sin x + \cos x \right| – \ln \sin x \right) + \frac{1}{2} \ln \sin x + \frac{x}{2} – \frac{\pi}{4} } \\ \\
& = \textcolor{lightgreen}{ \frac{1}{2} \left( \ln \left| \sin x + \cos x \right| + x \right) + C }
\end{aligned}
$$

化一为二

$$
\textcolor{lightgreen}{
\int \tan x \mathrm{~d} x = ?
}
$$

难度评级:

$$
\begin{aligned}
\textcolor{lightgreen}{\int \tan x \mathrm{~d} x} & = \int \frac{\sin x}{\cos x} \mathrm{~d} x \\ \\
& = -\int \frac{\mathrm{d} (\cos x)}{\cos x} \\ \\
& = \textcolor{lightgreen}{ -\ln|\cos x| + C }
\end{aligned}
$$

其中,$C$ 为任意常数.


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2026 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2026   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress