一、题目
微分方程 $y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0$ 的通解为?
难度评级:
二、解析 
本题的解题思路如图 01 所示:
首先,由原微分方程 $y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0$, 可得:
$$
\begin{align}
& y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0 \notag \\ \notag \\
\textcolor{lightgreen}{ \leadsto } \ & \frac{y}{\mathrm{d} y} + \frac{x^{2} – 3x}{\mathrm{d} x} = 0 \notag \\ \notag \\
\textcolor{lightgreen}{ \leadsto } \ & \frac{y}{\mathrm{d} y} = – \frac{x^{2} – 3x}{\mathrm{d} x} \notag \\ \notag \\
\textcolor{lightgreen}{ \leadsto } \ & \frac{\textcolor{orange}{y}}{\textcolor{lightgreen}{\mathrm{d} y}} = \frac{\textcolor{orange}{3x – x^{2}}}{\textcolor{lightgreen}{\mathrm{d} x}} \tag{1} \\ \notag \\
\textcolor{lightgreen}{ \leadsto } \ & \frac{\textcolor{lightgreen}{\mathrm{d} y}}{\textcolor{orange}{y}} = \frac{\textcolor{lightgreen}{\mathrm{d} x}}{\textcolor{orange}{3x – x^{2}}} \tag{2}
\end{align}
$$
于是可知,若要求解出本题中微分方程的通解,就需要对上面的 $(2)$ 式进行积分。
但是,$(2)$ 式中的 $y$ 在分母上,必然需要 $y \neq 0$, 因此,我们就需要检查一下 $y = 0$ 是不是能令本题中微分方程成立的一个特解:
当 $y = 0$ 时,$\mathrm{d} y = 0$, 代入原微分方程 $y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0$, 可得:
$$
\begin{aligned}
& 0 \cdot \mathrm{d} x + \left( x^{2} – 3x \right) \cdot 0 = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & 0 = 0
\end{aligned}
$$
因此可知,$y = 0$ 是原微分方程的一个特解。
接着,当 $y \neq 0$ 时,对 $(2)$ 式两边积分,得:
$$
\begin{aligned}
& \frac{\textcolor{lightgreen}{\mathrm{d} y}}{\textcolor{orange}{y}} = \frac{\textcolor{lightgreen}{\mathrm{d} x}}{\textcolor{orange}{3x – x^{2}}} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \int \frac{1}{y} \mathrm{~d} y = \int \frac{1}{3x – x^{2}} \mathrm{~d} x \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \int \frac{1}{y} \mathrm{~d} y = \frac{1}{3} \int \left( \frac{1}{3 – x} + \frac{1}{x} \right) \mathrm{~d} x \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \int \frac{1}{y} \mathrm{~d} y = \frac{1}{3} \left( – \ln |3-x| + \ln |x| \right) + C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \int \frac{1}{y} \mathrm{~d} y = \frac{1}{3} \left( \ln |x| – \ln |3-x| \right) + C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y| = \frac{1}{3} \ln \left| \frac{x}{3-x} \right| + C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & 3\ln |y| = \ln \left| \frac{x}{3-x} \right| + 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y|^{3} = \ln \left| \frac{x}{3-x} \right| + 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y|^{3} – \ln \left| \frac{x}{3-x} \right| = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y|^{3} + \ln \left| \frac{x}{3-x} \right|^{-1} = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y|^{3} + \ln \left| \frac{3-x}{x} \right| = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln \left( |y|^{3} \cdot \left| \frac{3-x}{x} \right| \right) = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln \left( \left| y^{3} \cdot \frac{3-x}{x} \right| \right) = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \mathrm{e}^{3C_{1}} = \left| y^{3} \cdot \frac{3-x}{x} \right| \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{lightgreen}{ y^{3} \cdot \frac{3-x}{x} = \pm \mathrm{e}^{3 C_{1}} }
\end{aligned}
$$
若令 $C = \pm \mathrm{e}^{ 3 C_{1} }$, 则:
$$
y^{3} \cdot \frac{ 3-x}{x} = C
$$
若令 $C = 0$, 则有 $y = 0$, 于是微分方程 $y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0$ 的通解为:
$$
y^{3} \cdot \frac{ 3-x}{x} = C
$$
其中,$C$ 为任意常数。
Tip
从上面的计算结果可以看出,我们求得的微分方程通解的表示式为 $y^{3} \cdot \frac{ 3-x }{x} = C$, 而这个表达式并不是我们常见的 $y(x) = ?$ 这样的标准的函数形式——
不过,写成 $y^{3} \cdot \frac{ 3-x }{x} = C$ 这样的形式仍然是正确的。
zhaokaifeng.com