微分方程的通解一定要写成标准的函数形式吗?

一、题目题目 - 荒原之梦

微分方程 $y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0$ 的通解为?

难度评级:

二、解析 解析 - 荒原之梦

本题的解题思路如图 01 所示:

微分方程的通解一定要写成标准的函数形式吗?| 荒原之梦考研数学 | 图 01.
图 01.

首先,由原微分方程 $y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0$, 可得:

$$
\begin{align}
& y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0 \notag \\ \notag \\
\textcolor{lightgreen}{ \leadsto } \ & \frac{y}{\mathrm{d} y} + \frac{x^{2} – 3x}{\mathrm{d} x} = 0 \notag \\ \notag \\
\textcolor{lightgreen}{ \leadsto } \ & \frac{y}{\mathrm{d} y} = – \frac{x^{2} – 3x}{\mathrm{d} x} \notag \\ \notag \\
\textcolor{lightgreen}{ \leadsto } \ & \frac{\textcolor{orange}{y}}{\textcolor{lightgreen}{\mathrm{d} y}} = \frac{\textcolor{orange}{3x – x^{2}}}{\textcolor{lightgreen}{\mathrm{d} x}} \tag{1} \\ \notag \\
\textcolor{lightgreen}{ \leadsto } \ & \frac{\textcolor{lightgreen}{\mathrm{d} y}}{\textcolor{orange}{y}} = \frac{\textcolor{lightgreen}{\mathrm{d} x}}{\textcolor{orange}{3x – x^{2}}} \tag{2}
\end{align}
$$

于是可知,若要求解出本题中微分方程的通解,就需要对上面的 $(2)$ 式进行积分。

但是,$(2)$ 式中的 $y$ 在分母上,必然需要 $y \neq 0$, 因此,我们就需要检查一下 $y = 0$ 是不是能令本题中微分方程成立的一个特解:

当 $y = 0$ 时,$\mathrm{d} y = 0$, 代入原微分方程 $y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0$, 可得:

$$
\begin{aligned}
& 0 \cdot \mathrm{d} x + \left( x^{2} – 3x \right) \cdot 0 = 0 \\ \\
\textcolor{lightgreen}{ \leadsto } \ & 0 = 0
\end{aligned}
$$

因此可知,$y = 0$ 是原微分方程的一个特解。

接着,当 $y \neq 0$ 时,对 $(2)$ 式两边积分,得:

$$
\begin{aligned}
& \frac{\textcolor{lightgreen}{\mathrm{d} y}}{\textcolor{orange}{y}} = \frac{\textcolor{lightgreen}{\mathrm{d} x}}{\textcolor{orange}{3x – x^{2}}} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \int \frac{1}{y} \mathrm{~d} y = \int \frac{1}{3x – x^{2}} \mathrm{~d} x \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \int \frac{1}{y} \mathrm{~d} y = \frac{1}{3} \int \left( \frac{1}{3 – x} + \frac{1}{x} \right) \mathrm{~d} x \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \int \frac{1}{y} \mathrm{~d} y = \frac{1}{3} \left( – \ln |3-x| + \ln |x| \right) + C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \int \frac{1}{y} \mathrm{~d} y = \frac{1}{3} \left( \ln |x| – \ln |3-x| \right) + C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y| = \frac{1}{3} \ln \left| \frac{x}{3-x} \right| + C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & 3\ln |y| = \ln \left| \frac{x}{3-x} \right| + 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y|^{3} = \ln \left| \frac{x}{3-x} \right| + 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y|^{3} – \ln \left| \frac{x}{3-x} \right| = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y|^{3} + \ln \left| \frac{x}{3-x} \right|^{-1} = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln |y|^{3} + \ln \left| \frac{3-x}{x} \right| = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln \left( |y|^{3} \cdot \left| \frac{3-x}{x} \right| \right) = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \ln \left( \left| y^{3} \cdot \frac{3-x}{x} \right| \right) = 3C_{1} \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \mathrm{e}^{3C_{1}} = \left| y^{3} \cdot \frac{3-x}{x} \right| \\ \\
\textcolor{lightgreen}{ \leadsto } \ & \textcolor{lightgreen}{ y^{3} \cdot \frac{3-x}{x} = \pm \mathrm{e}^{3 C_{1}} }
\end{aligned}
$$

若令 $C = \pm \mathrm{e}^{ 3 C_{1} }$, 则:

$$
y^{3} \cdot \frac{ 3-x}{x} = C
$$

若令 $C = 0$, 则有 $y = 0$, 于是微分方程 $y \mathrm {~d} x + \left( x^{2} – 3x \right) \mathrm{~d} y = 0$ 的通解为:

$$
y^{3} \cdot \frac{ 3-x}{x} = C
$$

其中,$C$ 为任意常数。


荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress