三元函数全微分的计算:比二元多一元

一、题目题目 - 荒原之梦

已知 $f(x,y,z)$ $=$ $\left( \frac{x}{y} \right)^{\frac{1}{z}}$, 则:

$$
\mathrm{d} f(1,1,1) = ?
$$

难度评级:

二、解析 解析 - 荒原之梦

首先,根据二元函数的全微分,推广可得三元函数的全微分为:

$$
\textcolor{yellow}{
\mathrm{d} f = \frac{\partial f}{\partial x} \mathrm{~d} x + \frac{\partial f}{\partial y} \mathrm{~d} y + \frac{\partial f}{\partial z} \mathrm{~d} z
}
$$

接着,我们对题目所给函数两端做变形处理:

$$
\begin{aligned}
& f(x, y, z) = \left( \frac{x}{y} \right)^{\frac{1}{z}} \\ \\
\Rightarrow & \ \textcolor{orangered}{\ln} f(x, y, z) = \textcolor{orangered}{\ln} \left( \frac{x}{y} \right)^{\frac{1}{z}} \\ \\
\Rightarrow & \ \textcolor{orangered}{\ln} f(x, y, z) = \frac{1}{z} \textcolor{orangered}{\ln} \left( \frac{x}{y} \right) \\ \\
\Rightarrow & \ \textcolor{orangered}{\ln} f(x, y, z) = \frac{1}{z} \textcolor{orangered}{\ln} x – \frac{1}{z} \textcolor{orangered}{\ln} y
\end{aligned}
$$

又因为:

$$
f(1,1,1) = \left( \frac{1}{1} \right)^{\frac{1}{1}} = \textcolor{springgreen}{1}
$$

于是:

$$
\begin{aligned}
& \left[ \ln f \right]^{\prime}_{x} = \left[ \frac{1}{z} \ln x – \frac{1}{z} \ln y \right] ^{\prime} _{x} \\ \\
\Rightarrow & \ \frac{f ^{\prime} _{x}}{f} = \frac{1}{x} \\ \\
\Rightarrow & \ \textcolor{gray}{x = 1} \\ \\
\Rightarrow & \ \textcolor{springgreen}{ f ^{\prime} _{x} = \frac{\partial f}{\partial x} = 1 }
\end{aligned}
$$

于是:

$$
\begin{aligned}
& \left[ \ln f \right]^{\prime}_{y} = \left[ \frac{1}{z} \ln x – \frac{1}{z} \ln y \right] ^{\prime} _{y} \\ \\
\Rightarrow & \ \frac{f ^{\prime} _{y}}{f} = \frac{1}{y} \\ \\
\Rightarrow & \ \textcolor{gray}{y = 1} \\ \\
\Rightarrow & \ \textcolor{springgreen}{ f ^{\prime} _{y} = \frac{\partial f}{\partial y} = -1 }
\end{aligned}
$$

于是:

$$
\begin{aligned}
& \left[ \ln f \right]^{\prime}_{z} = \left[ \frac{1}{z} \ln x – \frac{1}{z} \ln y \right] ^{\prime} _{z} \\ \\
\Rightarrow & \ \textcolor{gray}{\begin{cases}
x = 1 \\
y = 1
\end{cases}} \\ \\
\Rightarrow & \ \left[ \ln f \right]^{\prime}_{z} = \left[ \frac{1}{z} \ln 1 – \frac{1}{z} \ln 1 \right] ^{\prime} _{z} \\ \\
\Rightarrow & \ \frac{f ^{\prime} _{z}}{f} = \left[ 0 \right]^{\prime} _{z} \\ \\
\Rightarrow & \ \textcolor{springgreen}{f ^{\prime} _{z} = \frac{\partial f}{\partial z} = 0}
\end{aligned}
$$

综上可知:

$$
\begin{aligned}
& \mathrm{d} f = \frac{\partial f}{\partial x} \mathrm{~d} x + \frac{\partial f}{\partial y} \mathrm{~d} y + \frac{\partial f}{\partial z} \mathrm{~d} z \\ \\
\Rightarrow & \ \mathrm{d} f (1, 1, 1) = 1 \cdot \mathrm{d} x + (-1) \cdot \mathrm{d} y + 0 \cdot \mathrm{d} z \\ \\
\Rightarrow & \ \textcolor{springgreen}{\boldsymbol{ \mathrm{d} f (1, 1, 1) = \mathrm{d} x – \mathrm{d} y }} \\ \\
\end{aligned}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress