二阶偏导数求导对比:两个变量的三元函数和三个变量的二元函数

设 $u$ $=$ $f \left( x+y+z, x^{2} + y^{2} + z^{2} \right)$, 求 $\frac{\partial^{2} u }{\partial x^{2}}$, $\frac{\partial^{2} u}{\partial x \partial y}$, $\frac{\partial^{2} u}{\partial y^{2}}$.

其中,$f$ 具有二阶连续偏导数。

难度评级:

首先,求解一阶偏导数:

$$
\begin{aligned}
\frac{\partial u}{\partial x} & = f_{1}^{\prime} + 2x f_{2}^{\prime} \\ \\
\frac{\partial u}{\partial y} & = f_{1}^{\prime} + 2y f_{2}^{\prime}
\end{aligned}
$$

于是:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2} } \\ \\
= & \ \frac{\partial u}{\partial x} \left( f_{1}^{\prime} + 2x f_{2}^{\prime} \right) \\ \\
= & \ f_{11}^{\prime \prime} + 2x f_{12}^{\prime \prime} + 2 f_{2}^{\prime} + 2x \left( f_{21}^{\prime \prime} + 2x f_{22}^{ \prime \prime } \right) \\ \\
= & \ \textcolor{springgreen}{\boldsymbol{ f_{11}^{\prime \prime} + 4x f_{12}^{\prime \prime} + 2 f_{2}^{\prime} + 4x^{2} f_{22}^{\prime \prime} }}
\end{aligned}
$$

于是:

$$
\begin{aligned}
\frac{\partial^{2} u }{\partial x \partial y} \\ \\
= & \ \frac{\partial u}{\partial y} \left( f_{1}^{\prime} + 2y f_{2}^{\prime} \right) \\ \\
= & \ f_{11}^{\prime \prime} + 2y f_{12}^{\prime \prime} + 2x \left( f_{21}^{\prime \prime} + 2y f_{22}^{\prime \prime} \right) \\ \\
= & \ \textcolor{springgreen}{\boldsymbol{ f_{11}^{\prime \prime} + 2 (x+y) f_{12}^{\prime \prime} + 4x y f_{22}^{\prime \prime} }}
\end{aligned}
$$

于是:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial y^{2}} \\ \\
= & \ \frac{\partial u}{\partial y} \left( f_{1}^{\prime} + 2y f_{2}^{\prime} \right) \\ \\
= & \ f_{11}^{\prime \prime} + 2y f_{12}^{\prime \prime} + 2 f_{2}^{\prime} + 2y \left( f_{21}^{\prime \prime} + 2y f_{22}^{\prime \prime} \right) \\ \\
= & \ \textcolor{springgreen}{\boldsymbol{ f_{11}^{\prime \prime} + 4y f_{12}^{\prime \prime} + 2 f_{2}^{\prime} + 4y^{2} f_{22}^{\prime \prime} }}
\end{aligned}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress