题目二:三个变量的二元函数
设 $u$ $=$ $f \left( x+y+z, x^{2} + y^{2} + z^{2} \right)$, 求 $\frac{\partial^{2} u }{\partial x^{2}}$, $\frac{\partial^{2} u}{\partial x \partial y}$, $\frac{\partial^{2} u}{\partial y^{2}}$.
其中,$f$ 具有二阶连续偏导数。
难度评级:
解析二
首先,求解一阶偏导数:
$$
\begin{aligned}
\frac{\partial u}{\partial x} & = f_{1}^{\prime} + 2x f_{2}^{\prime} \\ \\
\frac{\partial u}{\partial y} & = f_{1}^{\prime} + 2y f_{2}^{\prime}
\end{aligned}
$$
于是:
$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2} } \\ \\
= & \ \frac{\partial u}{\partial x} \left( f_{1}^{\prime} + 2x f_{2}^{\prime} \right) \\ \\
= & \ f_{11}^{\prime \prime} + 2x f_{12}^{\prime \prime} + 2 f_{2}^{\prime} + 2x \left( f_{21}^{\prime \prime} + 2x f_{22}^{ \prime \prime } \right) \\ \\
= & \ \textcolor{springgreen}{\boldsymbol{ f_{11}^{\prime \prime} + 4x f_{12}^{\prime \prime} + 2 f_{2}^{\prime} + 4x^{2} f_{22}^{\prime \prime} }}
\end{aligned}
$$
于是:
$$
\begin{aligned}
\frac{\partial^{2} u }{\partial x \partial y} \\ \\
= & \ \frac{\partial u}{\partial y} \left( f_{1}^{\prime} + 2y f_{2}^{\prime} \right) \\ \\
= & \ f_{11}^{\prime \prime} + 2y f_{12}^{\prime \prime} + 2x \left( f_{21}^{\prime \prime} + 2y f_{22}^{\prime \prime} \right) \\ \\
= & \ \textcolor{springgreen}{\boldsymbol{ f_{11}^{\prime \prime} + 2 (x+y) f_{12}^{\prime \prime} + 4x y f_{22}^{\prime \prime} }}
\end{aligned}
$$
于是:
$$
\begin{aligned}
\frac{\partial^{2} u}{\partial y^{2}} \\ \\
= & \ \frac{\partial u}{\partial y} \left( f_{1}^{\prime} + 2y f_{2}^{\prime} \right) \\ \\
= & \ f_{11}^{\prime \prime} + 2y f_{12}^{\prime \prime} + 2 f_{2}^{\prime} + 2y \left( f_{21}^{\prime \prime} + 2y f_{22}^{\prime \prime} \right) \\ \\
= & \ \textcolor{springgreen}{\boldsymbol{ f_{11}^{\prime \prime} + 4y f_{12}^{\prime \prime} + 2 f_{2}^{\prime} + 4y^{2} f_{22}^{\prime \prime} }}
\end{aligned}
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!