如何确定行列式展开式中有效项的个数?

一、题目题目 - 荒原之梦

难度评级:

二、解析 解析 - 荒原之梦

§2.1 不一般的解法

首先,我们先来看看行列式 $\begin{vmatrix} \boldsymbol{A} \end{vmatrix}$ 中有哪些可能非零的元素:

$$
\begin{vmatrix} \boldsymbol{A} \end{vmatrix} = \begin{vmatrix}
\mathbf{\textcolor{orangered}{a}} & \textit{0} & \mathbf{\textcolor{orangered}{b}} & \textit{0} \\
\textit{0} & \mathbf{\textcolor{orangered}{c}} & \textit{0} & \mathbf{\textcolor{orangered}{d}} \\
\mathbf{\textcolor{orangered}{e}} & \textit{0} & \mathbf{\textcolor{orangered}{f}} & \textit{0} \\
\textit{0} & \mathbf{\textcolor{orangered}{g}} & \textit{0} & \mathbf{\textcolor{orangered}{h}}
\end{vmatrix}
$$

由于行列式 $\begin{vmatrix} \boldsymbol{A} \end{vmatrix}$ 是一个四阶行列式,对于标准的四阶行列式,我们可以表示如下:

$$
\begin{vmatrix}
\mathbf{\textcolor{orangered}{a_{11}}} & a_{12} & \mathbf{\textcolor{orangered}{a_{13}}} & a_{14} \\
a_{21} & \mathbf{\textcolor{orangered}{a_{22}}} & a_{23} & \mathbf{\textcolor{orangered}{a_{24}}} \\
\mathbf{\textcolor{orangered}{a_{31}}} & a_{32} & \mathbf{\textcolor{orangered}{a_{33}}} & a_{34} \\
a_{41} & \mathbf{\textcolor{orangered}{a_{42}}} & a_{43} & \mathbf{\textcolor{orangered}{a_{44}}} \\
\end{vmatrix}
$$

所以,我们实际要在该行列式的展开式中考虑的元素就是:

$$
\begin{aligned}
\textcolor{springgreen}{a} & \Leftrightarrow \textcolor{springgreen}{a_{11}} \\
\textcolor{springgreen}{b} & \Leftrightarrow \textcolor{springgreen}{a_{13}} \\
\textcolor{yellow}{c} & \Leftrightarrow \textcolor{yellow}{a_{22}} \\
\textcolor{yellow}{d} & \Leftrightarrow \textcolor{yellow}{a_{24}} \\
\textcolor{orangered}{e} & \Leftrightarrow \textcolor{orangered}{a_{31}} \\
\textcolor{orangered}{f} & \Leftrightarrow \textcolor{orangered}{a_{33}} \\
\textcolor{pink}{g} & \Leftrightarrow \textcolor{pink}{a_{42}} \\
\textcolor{pink}{h} & \Leftrightarrow \textcolor{pink}{a_{44}}
\end{aligned}
$$

我们知道,行列式展开式每个展开项中的元素都来自行列式的不同行不同列,但是,我们应该怎么在展开项中排列这些元素的先后顺序呢?

其实,根据荒原之梦考研数学的《如何确定行列式展开计算公式中每一项的正负?- zhaokaifeng.com》这篇文章可知,“先将展开项中的元素按照行下标 $1$ 到 $n$ 顺序排列并穷举对应的列下标”,与“行下标和列下标都穷举”,效果是一样的。

因此,如果我们对 $a$ 到 $h$ 这八个可能非零的元素的行下标先按照 $1$, $2$, $3$, $4$ 排列好,那么:

第 $1$ 行元素可以出的列为:$1$ 或 $3$;
第 $2$ 行元素可以出的列为:$2$ 或 $4$;
第 $3$ 行元素可以出的列为:$1$ 或 $3$;
第 $4$ 行元素可以出的列为:$2$ 或 $4$;

于是,在行下标按顺序排列的情况下,我们可以组合出来的全部列下标为(注意列下标不能重复):

$$
\begin{aligned}
\begin{pmatrix}
\textcolor{#161615}{\colorbox{#99F944}{1}} & & 3 & \\
& 2 & & \textcolor{#161615}{\colorbox{#99F944}{4}} \\
1 & & \textcolor{#161615}{\colorbox{#99F944}{3}} & \\
& \textcolor{#161615}{\colorbox{#99F944}{2}} & & 4
\end{pmatrix} & \Rightarrow \textcolor{#161615}{\colorbox{#99F944}{1432}} \\ \\
\begin{pmatrix}
\textcolor{#161615}{\colorbox{#99F944}{1}} & & 3 & \\
& \textcolor{#161615}{\colorbox{#99F944}{2}} & & 4 \\
1 & & \textcolor{#161615}{\colorbox{#99F944}{3}} & \\
& 2 & & \textcolor{#161615}{\colorbox{#99F944}{4}}
\end{pmatrix} & \Rightarrow \textcolor{#161615}{\colorbox{#99F944}{1234}} \\ \\
\begin{pmatrix}
1 & & \textcolor{#161615}{\colorbox{#99F944}{3}} & \\
& \textcolor{#161615}{\colorbox{#99F944}{2}} & & 4 \\
\textcolor{#161615}{\colorbox{#99F944}{1}} & & 3 & \\
& 2 & & \textcolor{#161615}{\colorbox{#99F944}{4}}
\end{pmatrix} & \Rightarrow \textcolor{#161615}{\colorbox{#99F944}{3214}} \\ \\
\begin{pmatrix}
1 & & \textcolor{#161615}{\colorbox{#99F944}{3}} & \\
& 2 & & \textcolor{#161615}{\colorbox{#99F944}{4}} \\
\textcolor{#161615}{\colorbox{#99F944}{1}} & & 3 & \\
& \textcolor{#161615}{\colorbox{#99F944}{2}} & & 4
\end{pmatrix} & \Rightarrow \textcolor{#161615}{\colorbox{#99F944}{3412}} \\ \\
\end{aligned}
$$

于是,根据行列式的标准展开计算公式 – zhaokaifeng.com,我们有:

$$
\begin{aligned}
\begin{vmatrix} \boldsymbol{A} \end{vmatrix} \\ \\
& = (-1)^{\tau \left( \textcolor{#161615}{\colorbox{#99F944}{1432}} \right)} \cdot a_{1 \textcolor{#161615}{\colorbox{#99F944}{1}}} \cdot a_{2 \textcolor{#161615}{\colorbox{#99F944}{4}}} \cdot a_{3 \textcolor{#161615}{\colorbox{#99F944}{3}}} \cdot a_{4 \textcolor{#161615}{\colorbox{#99F944}{2}}} \\
& + (-1)^{\tau \left( \textcolor{#161615}{\colorbox{#99F944}{1234}} \right)} \cdot a_{1 \textcolor{#161615}{\colorbox{#99F944}{1}}} \cdot a_{2 \textcolor{#161615}{\colorbox{#99F944}{2}}} \cdot a_{3 \textcolor{#161615}{\colorbox{#99F944}{3}}} \cdot a_{4 \textcolor{#161615}{\colorbox{#99F944}{4}}} \\
& + (-1)^{\tau \left( \textcolor{#161615}{\colorbox{#99F944}{3214}} \right)} \cdot a_{1 \textcolor{#161615}{\colorbox{#99F944}{3}}} \cdot a_{2 \textcolor{#161615}{\colorbox{#99F944}{2}}} \cdot a_{3 \textcolor{#161615}{\colorbox{#99F944}{1}}} \cdot a_{4 \textcolor{#161615}{\colorbox{#99F944}{4}}} \\
& + (-1)^{\tau \left( \textcolor{#161615}{\colorbox{#99F944}{3412}} \right)} \cdot a_{1 \textcolor{#161615}{\colorbox{#99F944}{3}}} \cdot a_{2 \textcolor{#161615}{\colorbox{#99F944}{4}}} \cdot a_{3 \textcolor{#161615}{\colorbox{#99F944}{1}}} \cdot a_{4 \textcolor{#161615}{\colorbox{#99F944}{2}}} \\ \\
& = (-1)^{3} \cdot a_{1 \textcolor{#161615}{\colorbox{#99F944}{1}}} \cdot a_{2 \textcolor{#161615}{\colorbox{#99F944}{4}}} \cdot a_{3 \textcolor{#161615}{\colorbox{#99F944}{3}}} \cdot a_{4 \textcolor{#161615}{\colorbox{#99F944}{2}}} \\
& + (-1)^{0} \cdot a_{1 \textcolor{#161615}{\colorbox{#99F944}{1}}} \cdot a_{2 \textcolor{#161615}{\colorbox{#99F944}{2}}} \cdot a_{3 \textcolor{#161615}{\colorbox{#99F944}{3}}} \cdot a_{4 \textcolor{#161615}{\colorbox{#99F944}{4}}} \\
& + (-1)^{3} \cdot a_{1 \textcolor{#161615}{\colorbox{#99F944}{3}}} \cdot a_{2 \textcolor{#161615}{\colorbox{#99F944}{2}}} \cdot a_{3 \textcolor{#161615}{\colorbox{#99F944}{1}}} \cdot a_{4 \textcolor{#161615}{\colorbox{#99F944}{4}}} \\
& + (-1)^{4} \cdot a_{1 \textcolor{#161615}{\colorbox{#99F944}{3}}} \cdot a_{2 \textcolor{#161615}{\colorbox{#99F944}{4}}} \cdot a_{3 \textcolor{#161615}{\colorbox{#99F944}{1}}} \cdot a_{4 \textcolor{#161615}{\colorbox{#99F944}{2}}} \\ \\
& = -a_{1 1} \cdot a_{2 4} \cdot a_{3 3} \cdot a_{4 2} \\
& + a_{1 1} \cdot a_{2 2} \cdot a_{3 3} \cdot a_{4 4} \\
& – a_{1 3} \cdot a_{2 2} \cdot a_{3 1} \cdot a_{4 4} \\
& + a_{1 3} \cdot a_{2 4} \cdot a_{3 1} \cdot a_{4 2} \\ \\
& = a_{11} a_{33} \left( a_{22} a_{44} – a_{24} a_{42} \right) \\
& + a_{13} a_{31} \left( a_{24} a_{42} – a_{22} a_{44} \right) \\ \\
& = \left( a_{22} a_{44} – a_{24} a_{42} \right) \left( a_{11} a_{33} – a_{13} a_{31} \right) \\ \\
& = \textcolor{springgreen}{\boldsymbol{ \left( ch – dg \right) \left( af – be \right) }}
\end{aligned}
$$

附上前文中制作的对照表:

$\begin{aligned}
\textcolor{springgreen}{a} & \Leftrightarrow \textcolor{springgreen}{a_{11}} &
\textcolor{springgreen}{b} & \Leftrightarrow \textcolor{springgreen}{a_{13}} \\
\textcolor{yellow}{c} & \Leftrightarrow \textcolor{yellow}{a_{22}} & \textcolor{yellow}{d} & \Leftrightarrow \textcolor{yellow}{a_{24}} \\
\textcolor{orangered}{e} & \Leftrightarrow \textcolor{orangered}{a_{31}} & \textcolor{orangered}{f} & \Leftrightarrow \textcolor{orangered}{a_{33}} \\
\textcolor{pink}{g} & \Leftrightarrow \textcolor{pink}{a_{42}} & \textcolor{pink}{h} & \Leftrightarrow \textcolor{pink}{a_{44}}
\end{aligned}$

§2.2 一般的解法

由于行列式 $\begin{vmatrix} \boldsymbol{A} \end{vmatrix}$ 中的任意一行或者一列都只含有 $2$ 个两个非零元素,所以,我们可以随便挑选其中的一行或者一列,使用按行或者按列展开的方式将四阶行列式降为 $2$ 个三阶行列式,之后就可以继续降阶,或者直接利用三阶行列式的计算公式进行计算即可。

按第一行展开并直接按照三阶行列式计算:

$$
\begin{aligned}
\begin{vmatrix} \boldsymbol{A} \end{vmatrix} \\ \\
& = \begin{vmatrix}
a & 0 & b & 0 \\
0 & c & 0 & d \\
e & 0 & f & 0 \\
0 & g & 0 & h
\end{vmatrix} \\ \\
& = \begin{vmatrix}
\textcolor{black}{\colorbox{pink}{a}} & \textcolor{black}{\colorbox{pink}{0}} & \textcolor{black}{\colorbox{pink}{b}} & \textcolor{black}{\colorbox{pink}{0}} \\
\textcolor{black}{\colorbox{pink}{0}} & c & 0 & d \\
\textcolor{black}{\colorbox{pink}{e}} & 0 & f & 0 \\
\textcolor{black}{\colorbox{pink}{0}} & g & 0 & h
\end{vmatrix} \\ \\
& = \begin{vmatrix}
\textcolor{black}{\colorbox{pink}{a}} & \textcolor{black}{\colorbox{pink}{0}} & \textcolor{black}{\colorbox{pink}{b}} & \textcolor{black}{\colorbox{pink}{0}} \\
0 & c & \textcolor{black}{\colorbox{pink}{0}} & d \\
e & 0 & \textcolor{black}{\colorbox{pink}{f}} & 0 \\
0 & g & \textcolor{black}{\colorbox{pink}{0}} & h
\end{vmatrix} \\ \\
& = (-1) ^{1+1} \cdot a \begin{vmatrix}
c & 0 & d \\
0 & f & 0 \\
g & 0 & h
\end{vmatrix} + (-1) ^{1+3} \cdot b \begin{vmatrix}
0 & c & d \\
e & 0 & 0 \\
0 & g & h
\end{vmatrix} \\ \\
& = a \left[ cfh – dfg \right] + b \left[ dge – ceh \right] \\ \\
& = acfg – adfg + bdge – bceh \\ \\
& = afch – bech + bedg – afdg \\ \\
& = ch \left( af – be \right) + dg \left( be – af \right) \\ \\
& = \textcolor{springgreen}{\boldsymbol{ \left( ch – dg \right) \left( af – be \right) }}
\end{aligned}
$$

Next - 荒原之梦 Next Next - 荒原之梦

按第一行展开并降阶至二阶行列式计算:

$$
\begin{aligned}
\begin{vmatrix} \boldsymbol{A} \end{vmatrix} \\ \\
& = \begin{vmatrix}
a & 0 & b & 0 \\
0 & c & 0 & d \\
e & 0 & f & 0 \\
0 & g & 0 & h
\end{vmatrix} \\ \\
& = \begin{vmatrix}
\textcolor{black}{\colorbox{pink}{a}} & \textcolor{black}{\colorbox{pink}{0}} & \textcolor{black}{\colorbox{pink}{b}} & \textcolor{black}{\colorbox{pink}{0}} \\
\textcolor{black}{\colorbox{pink}{0}} & c & 0 & d \\
\textcolor{black}{\colorbox{pink}{e}} & 0 & f & 0 \\
\textcolor{black}{\colorbox{pink}{0}} & g & 0 & h
\end{vmatrix} \\ \\
& = \begin{vmatrix}
\textcolor{black}{\colorbox{pink}{a}} & \textcolor{black}{\colorbox{pink}{0}} & \textcolor{black}{\colorbox{pink}{b}} & \textcolor{black}{\colorbox{pink}{0}} \\
0 & c & \textcolor{black}{\colorbox{pink}{0}} & d \\
e & 0 & \textcolor{black}{\colorbox{pink}{f}} & 0 \\
0 & g & \textcolor{black}{\colorbox{pink}{0}} & h
\end{vmatrix} \\ \\
& = (-1) ^{1+1} \cdot a \begin{vmatrix}
c & 0 & d \\
0 & f & 0 \\
g & 0 & h
\end{vmatrix} + (-1) ^{1+3} \cdot b \begin{vmatrix}
0 & c & d \\
e & 0 & 0 \\
0 & g & h
\end{vmatrix} \\ \\
& = a \begin{vmatrix}
c & 0 & d \\
0 & f & 0 \\
g & 0 & h
\end{vmatrix} + b \begin{vmatrix}
0 & c & d \\
e & 0 & 0 \\
0 & g & h
\end{vmatrix} \\ \\
& = a \begin{vmatrix}
\textcolor{white}{\colorbox{brown}{c}} & \textcolor{white}{\colorbox{brown}{0}} & \textcolor{white}{\colorbox{brown}{d}} \\
\textcolor{white}{\colorbox{brown}{0}} & f & 0 \\
\textcolor{white}{\colorbox{brown}{g}} & 0 & h
\end{vmatrix} + b \begin{vmatrix}
\textcolor{white}{\colorbox{brown}{0}} & \textcolor{white}{\colorbox{brown}{c}} & \textcolor{white}{\colorbox{brown}{d}} \\
e & \textcolor{white}{\colorbox{brown}{0}} & 0 \\
0 & \textcolor{white}{\colorbox{brown}{g}} & h
\end{vmatrix} \\ \\
& = a \begin{vmatrix}
\textcolor{white}{\colorbox{brown}{c}} & \textcolor{white}{\colorbox{brown}{0}} & \textcolor{white}{\colorbox{brown}{d}} \\
0 & f & \textcolor{white}{\colorbox{brown}{0}} \\
g & 0 & \textcolor{white}{\colorbox{brown}{h}}
\end{vmatrix} + b \begin{vmatrix}
\textcolor{white}{\colorbox{brown}{0}} & \textcolor{white}{\colorbox{brown}{c}} & \textcolor{white}{\colorbox{brown}{d}} \\
e & 0 & \textcolor{white}{\colorbox{brown}{0}} \\
0 & g & \textcolor{white}{\colorbox{brown}{h}}
\end{vmatrix} \\ \\
& = (-1) ^{1+1} ac \begin{vmatrix}
f & 0 \\
0 & h
\end{vmatrix} + (-1) ^{1+3} ad \begin{vmatrix}
0 & f \\
g & 0
\end{vmatrix} \\
& + (-1)^{1+2} bc \begin{vmatrix}
e & 0 \\
0 & h
\end{vmatrix} + (-1)^{1+3} bd \begin{vmatrix}
e & 0 \\
0 & g
\end{vmatrix} \\ \\
& = acfh – adfg – bceh + bdeg \\ \\
& = afch – bech + bedg – afdg \\ \\
& = ch \left( af – be \right) + dg \left( be – af \right) \\ \\
& = \textcolor{springgreen}{\boldsymbol{ \left( ch – dg \right) \left( af – be \right) }}
\end{aligned}
$$


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress