矩阵乘法中的矩阵不满足消去律和交换律,但矩阵对应的行列式满足消去律和交换律

一、题目题目 - 荒原之梦

难度评级:

二、解析 解析 - 荒原之梦

$\boldsymbol { A }$, $\boldsymbol { B }$ 均为 $n$ 阶方阵,于是:

$$
| \boldsymbol { A } \boldsymbol { B } | = \textcolor{orangered}{| \boldsymbol { A } | \cdot | \boldsymbol { B } |} = \textcolor{springgreen}{| \boldsymbol { B } | \cdot | \boldsymbol { A } |}
$$

$$
| \boldsymbol { B } \boldsymbol { A } | = \textcolor{springgreen}{| \boldsymbol { B } | \cdot | \boldsymbol { A } |} = \textcolor{orangered}{| \boldsymbol { A } | \cdot | \boldsymbol { B } |}
$$

即:

$$
| \boldsymbol { A } \boldsymbol { B } | = | \boldsymbol { B } \boldsymbol { A } |
$$

因此可知,矩阵对应的行列式满足交换律,B

且根据前面的分析可知,矩阵本身不满足交换律,C

对于 A 选项,我们可以设:

$$
\begin{aligned}
\boldsymbol { A } & = \begin{bmatrix}
1 & 2 \\ 3 & 4
\end{bmatrix} \\ \\
\boldsymbol { B } & = \begin{bmatrix}
– 1 & – 2 \\ – 3 & – 4
\end{bmatrix}
\end{aligned}
$$

于是有:

$$
| \boldsymbol { A } | = | \boldsymbol { B } | = – 2
$$

但是:

$$
| \boldsymbol { A } + \boldsymbol { B } | = 0 \neq -4
$$

所以 A

同时,由于 $| \boldsymbol { A } |$ $=$ $| \boldsymbol { B } |$ $=$ $- 2$ $\neq$ $0$, 所以矩阵 $\boldsymbol { A }$ 和矩阵 $\boldsymbol { B }$ 的逆矩阵 $\boldsymbol{ A }^{-1}$ 和 $\boldsymbol{ B }^{-1}$ 均存在。

但是,由于 $\boldsymbol { A } + \boldsymbol { B }$ $=$ $0$, 因此,矩阵 $\boldsymbol { A } + \boldsymbol { B }$ 的逆矩阵 $(\boldsymbol { A } + \boldsymbol { B })^{-1}$ 不存在,即 D

综上可知, B 荒原之梦考研数学 | 本文结束


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress