一、题目
设 $y=y(x)$ 满足方程 $x^{2} y^{\prime \prime}-x y^{\prime}-9 y=0$, 且 $\left.y\right|_{x=1}=2$, $\left.y^{\prime}\right|_{x=1}=6$.
(1) 利用 $x=\mathrm{e}^{t}$ 化简方程, 并求 $y(x)$ 的表达式;
(2) 求 $\int_{1}^{2} y(x) \sqrt{4-x^{2}} \mathrm{~d} x$.
难度评级:
二、解析
第 (1) 问
本问的目的就是让我们用换元的方法将原微分方程中所有出现 $x$ 或者和 $x$ 相关的部分全部用 $e^{t}$ 替换。
首先,由于接下来要求解 $\frac{\mathrm{d} t}{\mathrm{d} x}$, 因此,由 $x(t) = e^{t}$ 可知:
$$
t(x) = \ln x
$$
接着,将 $y$ 看作 $x$ 的函数,$x$ 看作 $t$ 的函数,用复合函数的求解方法,分别表示出 $y^{\prime}$ 和 $y^{\prime \prime}$:
$$
\begin{aligned}
y^{\prime} \\ \\
& = \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ \\
& = \frac{\mathrm{~d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x} \\ \\
& = \textcolor{springgreen}{\frac{\mathrm{~d} y}{\mathrm{~d} t} \cdot \frac{1}{x}}
\end{aligned}
$$
$$
\begin{aligned}
y^{\prime \prime} \\ \\
& = \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} \\ \\
& = \frac{\mathrm{~d}}{\mathrm{~d} x} \left( \frac{\mathrm{~d} y}{\mathrm{~d} x} \right) \\ \\
& = \frac{\mathrm{~d}}{\mathrm{~d} x} \left( \frac{\mathrm{~d} y}{\mathrm{~d} t} \cdot \frac{1}{x} \right) \\ \\
& = \left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}} \cdot \frac{1}{x}\right) \cdot \frac{1}{x}+\frac{\mathrm{~d} y}{\mathrm{~d} t} \cdot\left(-\frac{1}{x^{2}}\right) \\ \\
& = \textcolor{springgreen}{\frac{1}{x^{2}} \cdot\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{~d} y}{\mathrm{~d} t}\right) }
\end{aligned}
$$
于是,原方程 $x^{2} \textcolor{springgreen}{y^{\prime \prime}} – x \textcolor{springgreen}{y^{\prime}} – 9 y=0$ 可以转化为:
$$
x^{2} \cdot \textcolor{springgreen}{\frac{1}{x^{2}} \cdot \left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{~d} y}{\mathrm{~d} t}\right)} + x \cdot \textcolor{springgreen}{\frac{\mathrm{~d} y}{\mathrm{~d} t} \cdot \frac{1}{x}} – 9 y=0 \Rightarrow
$$
$$
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-9 y=0 \Rightarrow
$$
$$
\textcolor{orangered}{
y^{\prime \prime} – 9y = 0 \tag{1}
}
$$
上面 $(1)$ 式的特征方程为:
$$
\lambda^{2} – 9 = 0 \Rightarrow \begin{cases}
\lambda_{1} = 3 \\
\lambda_{2} = -3
\end{cases}
$$
于是,$(1)$ 式对应的特征方程的通解为:
$$
y=C_{1} \textcolor{orangered}{e^{3 t}} + C_{2} \textcolor{orangered}{ e^{-3 t} }
$$
又:
$$
\textcolor{orangered}{
x = e^{t}
}
$$
所以:
$$
y = =C_{1} \textcolor{orangered}{x^{3}} + C_{2} \textcolor{orangered}{x^{-3}} \tag{2}
$$
将 $\left.y\right|_{x=1}=2$, $\left.y^{\prime}\right|_{x=1}=6$ 代入上面的 $(2)$ 式,得:
$$
\begin{cases}
C_{1}=2 \\
C_{2}=0
\end{cases}
$$
综上可知,$y(x)=2 x^{3}$.
第 (2) 问
解法一:整体代换
由第 $(1)$ 问可知 $y(x)=2 x^{3}$, 于是:
$$
\begin{aligned}
\int_{1}^{2} y(x) \sqrt{4-x^{2}} \mathrm{~d} x \\ \\
& = \int_{1}^{2} 2 x^{3} \sqrt{4-x^{2}} \mathrm{~d} x \\ \\
& = \int_{1}^{2} x^{2} \sqrt{4-x^{2}} \mathrm{~d} x^{2} \\ \\
& \xlongequal{t=4-x^{2}} -\int_{3}^{0}(4-t) \sqrt{t} \mathrm{~d} t \\ \\
& = \int_{0}^{3}(4-t) \sqrt{t} \mathrm{~d} t \\ \\
& = 4 \int_{0}^{3} t^{\frac{1}{2}} \mathrm{~d} t – \int_{0}^{3} t^{\frac{3}{2}} \mathrm{~d} t \\ \\
& = \left.4 \cdot \frac{2}{3} t^{\frac{3}{2}}\right|_{0} ^{3}-\left.\frac{2}{5} t^{\frac{5}{2}}\right|_{0} ^{3} \\ \\
& = \frac{22}{5} \sqrt{3}
\end{aligned}
$$
解法二:三角代换去根号
由第 $(1)$ 问可知 $y(x)=2 x^{3}$, 于是:
$$
\begin{aligned}
& \int_{1}^{2} y(x) \sqrt{4-x^{2}} \mathrm{~d} x \\ \\
& = \int_{1}^{2} 2 x^{3} \sqrt{4-x^{2}} \mathrm{~d} x \\ \\
& \xlongequal{x=2 \sin t} 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 8 \sin ^{3} t \cdot 2 \cos t \cdot 2 \cos t \mathrm{~d} t \\ \\
& = 64 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin ^{3} t \cdot \cos ^{2} t \mathrm{~d} t \\ \\
& = 64 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin ^{3} t \cdot \left(1-\sin ^{2} t\right) \mathrm{~d} t \\ \\
& = 64 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin ^{3} t \mathrm{~d} t – 64 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin ^{5} t \mathrm{~d} t \\ \\
& = -64 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin ^{2} t \mathrm{~d} (\cos t) + 64 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin ^{4} t \mathrm{~d} (\cos t) \\ \\
& = -64 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\left(1-\cos ^{2} t\right) \mathrm{~d}(\cos t)+64 \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}\left(1-\cos ^{2} t\right)^{2} \mathrm{~d}(\cos t) \\ \\
& \xlongequal{k = \cos t} -64 \int_{\frac{\sqrt{3}}{2}}^{0} (1-k^{2}) \mathrm{~d} k + 64 \int_{\frac{\sqrt{3}}{2}}^{0} (1-k^{2})^{2} \mathrm{~d} k \\ \\
& = 64 \int_{0}^{\frac{sqrt
3}{2}} \left[ (1-k^{2}) – (1-k^{2})^{2} \right] \mathrm{~d} k \\ \\
& = 64 \int _{0}^{\frac{\sqrt{3}}{2}} (k^{2} – k^{4}) \mathrm{~d} k \\ \\
& = 64 \left( \frac{1}{3} k^{3} – \frac{1}{5} k^{5} \right) \Bigg|_{0}^{\frac{\sqrt{3}}{2}} \\ \\
& = 64 \left( \frac{1}{3} \cdot \frac{3 \sqrt{3}}{8} – \frac{1}{5} \cdot \frac{9 \sqrt{3}}{32} \right) \\ \\
& = 8 \sqrt{3} – \frac{18 \sqrt{3}}{5} \\ \\
& = \frac{40 \sqrt{3} – 18 \sqrt{3}}{5} \\ \\
& = \frac{22 \sqrt{3}}{5}
\end{aligned}
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!