一、题目
若四维向量组 $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}$ 线性无关, 且向量 $\boldsymbol{\beta}_{1}=\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{3}+\boldsymbol{\alpha}_{4}$, $\boldsymbol{\beta}_{2}=\boldsymbol{\alpha}_{2}-\boldsymbol{\alpha}_{4}$, $\boldsymbol{\beta}_{3}=\boldsymbol{\alpha}_{3}+\boldsymbol{\alpha}_{4}$, $\boldsymbol{\beta}_{4}=\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3}$, $\boldsymbol{\beta}_{5}=2 \boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}+\boldsymbol{\alpha}_{3}$. 则 $r\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}, \boldsymbol{\beta}_{4}, \boldsymbol{\beta}_{5}\right)=?$
难度评级:
二、解析
已知:
$$
\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & -1 & 1 & 0\end{array}\right]
$$
于是:
$$
\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & -1 & 1 & 0\end{array}\right] \Rightarrow\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0\end{array}\right] \Rightarrow \left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]
$$
于是:
$$
r\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}, \boldsymbol{\beta}_{4}, \boldsymbol{\beta}_{5}\right) = 3
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!