只要行列式有两行或者两列成比例,则组成该行列式的行或者列向量之间都是线性相关的

一、题目题目 - 荒原之梦

设 $\boldsymbol{\alpha}_{1}=\left[\begin{array}{l}0 \\ 0 \\ c_{1}\end{array}\right]$, $\boldsymbol{\alpha}_{2}=\left[\begin{array}{l}0 \\ 1 \\ c_{2}\end{array}\right]$, $\boldsymbol{\alpha}_{3}=\left[\begin{array}{c}1 \\ -1 \\ c_{3}\end{array}\right]$, $\boldsymbol{\alpha}_{4}=\left[\begin{array}{c}-1 \\ 1 \\ c_{4}\end{array}\right]$, 其中 $c_{1}, c_{2}$, $c_{3}, c_{4}$ 为任意常数, 则下列向量组线性相关的是哪个?

(A) $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$

(B) $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{4}$

(C) $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}$

(D) $\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}$

难度评级:

二、解析 解析 - 荒原之梦

由于:

$$
\begin{vmatrix}
\alpha_{1} & \alpha_{3} & \alpha_{4}
\end{vmatrix} =
$$

$$
\begin{vmatrix}
0 & 1 & -1 \\
0 & -1 & 1 \\
c_{1} & c_{3} & c_{4}
\end{vmatrix} = \begin{vmatrix}
0 & 0 & 0 \\
0 & -1 & 1 \\
c_{1} & c_{3} & c_{4}
\end{vmatrix} = 0
$$

因此,正确选项为 C.


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress