一、题目
已知 $\delta>0$, 且在区间 $(-\delta, \delta)$ 内,有:
$$
\begin{cases}
& f^{\prime \prime}(x)>0; \\
& f(0)=0; \\
& f^{\prime}(0)=0
\end{cases}
$$
又有 $I=\int_{-\delta}^{\delta} f(x) \mathrm{d} x$.
则 $I$ 与 $0$ 的关系如何?
难度评级:
二、解析
已知:
$$
\begin{cases}
& f^{\prime \prime}(x)>0; \\
& f(0)=0; \\
& f^{\prime}(0)=0
\end{cases}
$$
于是可知,函数 $f(x)$ 在区间 $(-\delta, \delta)$ 内是一个凹函数,且在 $x = 0$ 处取得最小值,最小值为 $0$, 则:
$$
f(x) > 0, \quad x \in (-\delta, \delta).
$$
于是可知:
$$
I=\int_{-\delta}^{\delta} f(x) \mathrm{d} x > 0.
$$
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!