一、题目
$$
\int \frac{\cos 2x}{\cos^{2} x (1+\sin^{2} x)} \mathrm{d} x = ?
$$
难度评级:
二、解析
$$
\int \frac{\cos 2x}{\cos^{2} x (1+\sin^{2} x)} \mathrm{d} x =
$$
$$
\int \frac{\cos^{2} x – \sin^{2} x}{\cos^{2} x (1+\sin^{2} x)} \mathrm{d} x =
$$
$$
\int \frac{1}{\cos^{2} x} \cdot \frac{\cos^{2} x – \sin^{2} x}{1+\sin^{2} x} \mathrm{d} x.
$$
Next
接下来开始根据式子的特点凑微分:
又:
$$
(\tan x)^{\prime} = \frac{1}{\cos^{2} x}
$$
因此:
$$
\int \frac{1}{\cos^{2} x} \cdot \frac{\cos^{2} x – \sin^{2} x}{1+\sin^{2} x} \mathrm{d} x =
$$
$$
\int \frac{1}{\cos^{2} x} \cdot \frac{\cos^{2} x – \sin^{2} x}{1+\sin^{2} x} \cdot \cos^{2} x \cdot \mathrm{d} (\tan x) =
$$
$$
\int \frac{\cos^{2} x – \sin^{2} x}{1+\sin^{2} x} \mathrm{d} (\tan x) =
$$
Next
接下来开始将式子中所有的三角函数都往 $\tan x$ 的形式转化(方法:分子分母同除以 $\cos^{2} x$):
$$
\int \frac{\cos^{2} x – \sin^{2} x}{1+\sin^{2} x} \mathrm{d} (\tan x) =
$$
$$
\int \frac{1 – \tan^{2} x}{\frac{1}{\cos^{2} x} + \tan^{2} x} \mathrm{d} (\tan x) =
$$
$$
\int \frac{1 – \tan^{2} x}{\frac{\sin^{2} x + \cos^{2} x}{\cos^{2} x} + \tan^{2} x} \mathrm{d} (\tan x) =
$$
$$
\int \frac{1 – \tan^{2} x}{\tan^{2} x + 1 + \tan^{2} x} \mathrm{d} (\tan x) =
$$
$$
\int \frac{1 – \tan^{2} x}{1 + 2\tan^{2} x} \mathrm{d} (\tan x) \Rightarrow
$$
Next
令 $\tan x$ $=$ $u$ $\Rightarrow$
$$
\int \frac{1 – u^{2} }{1 + 2 u^{2} } \mathrm{d} u =
$$
$$
\frac{-1}{2} \cdot \int \frac{(1 + 2u^{2}) – 3 }{1 + 2 u^{2} } \mathrm{d} u =
$$
$$
\frac{-1}{2} \cdot \Bigg[ \int \frac{1 + 2u^{2}}{1 + 2 u^{2} } \mathrm{d} u – \int \frac{3}{1 + 2 u^{2} } \mathrm{d} u \Bigg] =
$$
$$
\frac{-1}{2} \int 1 \mathrm{d} u + \frac{3}{2} \int \frac{1}{1 + 2 u^{2} } \mathrm{d} u =
$$
$$
\frac{-1}{2} u + \frac{3}{2} \int \frac{\frac{1}{2}}{\frac{1}{2} + u^{2} } \mathrm{d} u =
$$
$$
\frac{-1}{2} u + \frac{3}{2} \cdot \frac{1}{2} \int \frac{1}{(\frac{1}{\sqrt{2}})^{2} + u^{2} } \mathrm{d} u =
$$
$$
\frac{-1}{2} u + \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{2} \arctan (\sqrt{2} u) + C =
$$
$$
\frac{-1}{2} u + \frac{3}{2 \sqrt{2}} \arctan (\sqrt{2} u) + C.
$$
Next
令 $u$ $=$ $\tan x$, 则:
$$
\int \frac{\cos 2x}{\cos^{2} x (1+\sin^{2} x)} \mathrm{d} x =
$$
$$
\frac{-1}{2} \tan x + \frac{3}{2 \sqrt{2}} \arctan (\sqrt{2} \tan x) + C.
$$
其中,$C$ 为常数.
高等数学
涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。
线性代数
以独特的视角解析线性代数,让繁复的知识变得直观明了。
特别专题
通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。
让考场上没有难做的数学题!