已知 $y$ $=$ $x^{2}$ $\cos x$, 求解 $y^{(n)}$

一、题目题目 - 荒原之梦

已知 $y$ $=$ $x^{2}$ $\cos x$, 求解 $y^{(n)}$

难度评级:

二、解析 解析 - 荒原之梦

解答本题需要首先掌握高阶导数的计算公式

已知:

$$
(x^{2})^{\prime} = 2x,
$$

$$
(x^{2})^{\prime \prime} = 2,
$$

$$
(x^{2})^{\prime \prime \prime} = 0.
$$

Next - 荒原之梦 Next Next - 荒原之梦

因此:

$y^{(n)}$ $=$ $C_{n}^{0}$ $(x^{2})^{(0)}$ $\cdot$ $(\cos x)^{(n)}$ $+$ $C_{n}^{1}$ $(x^{2})^{(1)}$ $\cdot$ $(\cos x)^{(n-1)}$ $+$ $C_{n}^{2}$ $(x^{2})^{(2)}$ $\cdot$ $(\cos x)^{(n-2)}$ $\Rightarrow$

Next - 荒原之梦 Next Next - 荒原之梦

$y^{(n)}$ $=$ $C_{n}^{0}$ $\cdot$ $x^{2}$ $\cdot$ $(\cos x)^{(n)}$ $+$ $C_{n}^{1}$ $\cdot$ $2x$ $\cdot$ $(\cos x)^{(n-1)}$ $+$ $C_{n}^{2}$ $\cdot$ $2$ $\cdot$ $(\cos x)^{(n-2)}$ $\Rightarrow$

Next - 荒原之梦 Next Next - 荒原之梦

$y^{(n)}$ $=$ $1$ $\cdot$ $x^{2}$ $\cdot$ $(\cos x)^{(n)}$ $+$ $n$ $\cdot$ $2x$ $\cdot$ $(\cos x)^{(n-1)}$ $+$ $\frac{n(n-1)}{2 \times 1}$ $\cdot$ $2$ $\cdot$ $(\cos x)^{(n-2)}$ $\Rightarrow$

Next - 荒原之梦 Next Next - 荒原之梦

$y^{(n)}$ $=$ $x^{2}$ $\cdot$ $(\cos x)^{(n)}$ $+$ $2xn$ $\cdot$ $(\cos x)^{(n-1)}$ $+$ $n(n-1)$ $\cdot$ $(\cos x)^{(n-2)}$ $\Rightarrow$

Next - 荒原之梦 Next Next - 荒原之梦

$y^{(n)}$ $=$ $x^{2}$ $\cdot$ $\cos \big[ x + (n \cdot \frac{\pi}{2}) \big]$ $+$ $2xn$ $\cdot$ $\cos \big[ x + (n-1) \cdot \frac{\pi}{2} \big]$ $+$ $n(n-1)$ $\cdot$ $\cos \big[ x + (n-2) \cdot \frac{\pi}{2} \big]$.


荒原之梦考研数学思维导图
荒原之梦考研数学思维导图

高等数学箭头 - 荒原之梦

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数箭头 - 荒原之梦

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题箭头 - 荒原之梦

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

荒原之梦考研数学网 | 让考场上没有难做的数学题!

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress