问题
已知,有二阶常系数线性齐次微分方程:$y^{\prime \prime}$ $+$ $p$ $y^{\prime}$ $+$ $q y$ $=$ $0$.
其中,$p$, $q$ 均为常数.
对应的特征方程为:
$\lambda^{2}$ $+$ $p$ $\lambda$ $+$ $q$ $=$ $0$.
则,当上述特征方程的根 $\lambda$ $=$ $\alpha$ $\pm$ $i$ $\beta$ (复根) 时,该微分方程的通解 $y(x)$ $=$ $?$
选项
[A]. $y(x)$ $=$ $\mathrm{e}^{\alpha x}$ $($ $C_{1}$ $\cos \beta x$ $+$ $C_{2}$ $\sin \beta x$ $)$[B]. $y(x)$ $=$ $\beta$ $\mathrm{e}^{\alpha x}$ $($ $C_{1}$ $\cos x$ $+$ $C_{2}$ $\sin x$ $)$
[C]. $y(x)$ $=$ $\mathrm{e}^{\alpha x}$ $($ $C_{1}$ $\cos \beta x$ $+$ $C_{2}$ $\sin \beta x$ $)$
[D]. $y(x)$ $=$ $($ $C_{1}$ $+$ $C_{2}$ $x$ $)$ $\mathrm{e}^{\lambda_{1} x}$