问题
如果积分区域 $D$ 关于直线 $y$ $=$ $x$ 对称,则以下对二重积分 $\iint_{D}$ $f(x, y)$ $\mathrm{d} \sigma$ 的化简,正确的是哪个?选项
[A]. $\iint_{D}$ $f(x, y)$ $\mathrm{d} \sigma$ $=$ $\iint_{D}$ $f(y, x)$ $\mathrm{d} \sigma$ $=$ $\iint_{D}$ $($ $f(x, y)$ $+$ $f(y, x)$ $)$ $\mathrm{d} \sigma$[B]. $\iint_{D}$ $f(x, y)$ $\mathrm{d} \sigma$ $=$ $\iint_{D}$ $f(y, x)$ $\mathrm{d} \sigma$ $=$ $\frac{1}{2}$ $\cdot$ $\iint_{D}$ $($ $f(x, y)$ $+$ $f(y, x)$ $)$ $\mathrm{d} \sigma$
[C]. $\iint_{D}$ $f(x, y)$ $\mathrm{d} \sigma$ $=$ $\iint_{D}$ $f(y, x)$ $\mathrm{d} \sigma$ $=$ $\iint_{\frac{D}{2}}$ $($ $f(x, y)$ $+$ $f(y, x)$ $)$ $\mathrm{d} \sigma$
[D]. $\iint_{D}$ $f(x, y)$ $\mathrm{d} \sigma$ $=$ $\iint_{D}$ $f(y, x)$ $\mathrm{d} \sigma$ $=$ $\frac{1}{2}$ $\cdot$ $\iint_{D}$ $($ $f(x, y)$ $-$ $f(y, x)$ $)$ $\mathrm{d} \sigma$