问题
已知 $\textcolor{Orange}{c}$ $\textcolor{Orange}{\in}$ $\textcolor{Orange}{[a, b]}$, 若当 $\textcolor{Orange}{x}$ $\textcolor{Orange}{\rightarrow}$ $\textcolor{Orange}{c}$ 的时候,函数 $f(x)$ 无界,则以下关于瑕积分 $\textcolor{Orange}{\int_{a}^{b}}$ $\textcolor{Orange}{f(x)}$ $\textcolor{Orange}{\mathrm{d} x}$ 的结论中,正确的是哪个?选项
[A]. $\int_{a}^{b}$ $f(x)$ $\mathrm{d} x$ $=$ $\lim_{\xi \rightarrow 0^{+}}$ $\int_{a}^{c – \xi}$ $f(x)$ $\mathrm{d} x$ $-$ $\lim_{\mu \rightarrow 0^{+}}$ $\int_{c + \mu}^{b}$ $f(x)$ $\mathrm{d} x$[B]. $\int_{a}^{b}$ $f(x)$ $\mathrm{d} x$ $=$ $\lim_{\xi \rightarrow 0^{-}}$ $\int_{a}^{c – \xi}$ $f(x)$ $\mathrm{d} x$ $+$ $\lim_{\mu \rightarrow 0^{-}}$ $\int_{c + \mu}^{b}$ $f(x)$ $\mathrm{d} x$
[C]. $\int_{a}^{b}$ $f(x)$ $\mathrm{d} x$ $=$ $\lim_{\xi \rightarrow 0^{+}}$ $\int_{a}^{c – \xi}$ $f(x)$ $\mathrm{d} x$ $+$ $\lim_{\mu \rightarrow 0^{+}}$ $\int_{c + \mu}^{b}$ $f(x)$ $\mathrm{d} x$
[D]. $\int_{a}^{b}$ $f(x)$ $\mathrm{d} x$ $=$ $\lim_{\xi \rightarrow 0^{+}}$ $\int_{a}^{c + \xi}$ $f(x)$ $\mathrm{d} x$ $+$ $\lim_{\mu \rightarrow 0^{+}}$ $\int_{c – \mu}^{b}$ $f(x)$ $\mathrm{d} x$
$$\int_{\textcolor{Red}{a}}^{\textcolor{Red}{b}} f(x) \mathrm{d} x =$$ $$\lim_{\textcolor{Orange}{\xi} \textcolor{Green}{\rightarrow} \textcolor{Orange}{0}^{\textcolor{Red}{+}}} \int_{\textcolor{Red}{a}}^{\textcolor{Red}{c} \textcolor{Green}{-} \textcolor{Orange}{\xi}} f(x) \mathrm{d} x$$ $$\textcolor{Green}{+}$$ $$\lim_{\textcolor{Orange}{\mu} \textcolor{Green}{\rightarrow} \textcolor{Orange}{0}^{\textcolor{Red}{+}}} \int_{\textcolor{Red}{c} \textcolor{Green}{+} \textcolor{Orange}{\mu}}^{\textcolor{Red}{b}} f(x) \mathrm{d} x.$$ 注意:当 $\xi$ $\rightarrow$ $0^{\textcolor{Red}{+}}$ 时,$($ $c$ $-$ $\xi$ $)$ $\rightarrow$ $c^{\textcolor{Red}{-}}$; 当 $\mu$ $\rightarrow$ $0^{\textcolor{Red}{+}}$ 时,$($ $c$ $+$ $\mu$ $)$ $\rightarrow$ $c^{\textcolor{Red}{+}}$