题目
设 $A$ 为三阶矩阵,$a_{1},a_{2},a_{3}$ 是线性无关的向量组。若 $A \alpha_{1} = 2 \alpha_{1} + \alpha_{2} + \alpha_{3}$, $A \alpha_{2} = \alpha_{2} + 2 \alpha_{3}$, $A \alpha_{3} = – \alpha_{2} + \alpha_{3}$, 则 $A$ 的实特征值为 $?$
继续阅读“2018年考研数二第14题解析”设 $A$ 为三阶矩阵,$a_{1},a_{2},a_{3}$ 是线性无关的向量组。若 $A \alpha_{1} = 2 \alpha_{1} + \alpha_{2} + \alpha_{3}$, $A \alpha_{2} = \alpha_{2} + 2 \alpha_{3}$, $A \alpha_{3} = – \alpha_{2} + \alpha_{3}$, 则 $A$ 的实特征值为 $?$
继续阅读“2018年考研数二第14题解析”设函数 $z=z(x,y)$ 由方程 $\ln z + e^{z-1} = xy$ 确定,则 $\frac{\partial z}{\partial x} |_{(2,\frac{1}{2})}=?$
继续阅读“2018年考研数二第13题解析”$
\left\{\begin{matrix}
x=\cos ^{3} t,\\
y=\sin ^{3} t
\end{matrix}\right.
$ 在 $t=\frac{\pi}{4}$ 对应点处的曲率为 $?$
设 $A$, $B$ 为 $n$ 阶矩阵,记 $r(X)$ 为矩阵 $X$ 的秩,$(X,Y)$ 表示分块矩阵,则 $?$
$$A. r(A,AB)=r(A)$$
$$B. r(A,BA)=r(A)$$
$$C. r(A,B)= \max \{ r(A), r(B) \}$$
$$D. r(A,B) = r(A^{\top}, B^{\top})$$
继续阅读“2018年考研数二第08题解析”下列矩阵中,与矩阵 $\begin{bmatrix} 1& 1& 0\\ 0& 1& 1\\ 0& 0& 1 \end{bmatrix}$ 相似的为( )
⟨A⟩. $\begin{bmatrix} 1& 1& -1\\ 0& 1& 1\\ 0& 0& 1 \end{bmatrix}$
⟨B⟩. $\begin{bmatrix} 1& 0& -1\\ 0& 1& 1\\ 0& 0& 1 \end{bmatrix}$
⟨C⟩. $\begin{bmatrix} 1& 1& -1\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}$
⟨D⟩. $\begin{bmatrix} 1& 0& -1\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}$
$$
\int_{-1}^{0} \mathrm{~d} x \int_{-x}^{2-x^{2}} \left(1-xy \right) \mathrm{~d} y +\int_{0}^{1} \mathrm{~d} x \int_{x}^{2-x^{2}} \left(1-xy \right) \mathrm{~d} y = ?
$$
⟨A⟩. $\frac{5}{3}$
⟨B⟩. $\frac{5}{6}$
⟨C⟩. $\frac{7}{3}$
⟨D⟩. $\frac{7}{6}$
设 $M$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1+x)^{2}}{1+x^{2}} \mathrm{~d} x$, $N$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1+x}{\mathrm{e}^{x}} \mathrm{~d} x$, $K$ $=$ $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1+\sqrt{\cos x}) \mathrm{~d} x$, 则( )
⟨A⟩. $M$ $>$ $N$ $>$ $K$
⟨C⟩. $K$ $>$ $M$ $>$ $N$
⟨B⟩. $M$ $>$ $K$ $>$ $N$
⟨D⟩. $K$ $>$ $N$ $>$ $M$
设函数 $f(x)$ 在 $[0, 1]$ 上二阶可导,且 $\int_{0}^{1} f(x) \mathrm{~d} x = 0$, 则 $?$
⟨A⟩. 当 $f^{\prime}(x)$ $<$ $0$ 时,$f \left(\frac{1}{2} \right)$ $<$ $0$
⟨B⟩. 当 $f^{\prime \prime}(x)$ $<$ $0$ 时,$f \left(\frac{1}{2} \right)$ $<$ $0$
⟨C⟩. 当 $f^{\prime}(x)$ $>$ $0$ 时,$f \left(\frac{1}{2} \right)$ $<$ $0$
⟨D⟩. 当 $f^{\prime \prime}(x)$ $>$ $0$ 时,$f \left(\frac{1}{2} \right)$ $<$ $0$
设函数 $f(x) = \left\{\begin{matrix} -1, x<0,\\ 1, x \geqslant 0, \end{matrix}\right.$ $g(x) = \left\{\begin{matrix} 2-ax,x \leqslant -1,\\ x, -1<x<0,\\ x-b, x \geqslant 0, \end{matrix}\right.$ 若 $f(x)+g(x)$ 在 $R$ 上连续,则 $?$
$$A. a=3,b=1$$
$$B. a=3,b=2$$
$$C. a=-3,b=1$$
$$D. a=-3,b=2$$
继续阅读“2018年考研数二第03题解析”下列函数中,在 $x = 0$ 处不可导的是 $?$.
$$A. f(x) = |x| \sin |x|$$
$$B. f(x) = |x| \sin \sqrt{|x|}$$
$$C. f(x) = \cos |x|$$
$$D. f(x) = \cos \sqrt{|x|}$$
继续阅读“2018年考研数二第02题解析”若 $\lim_{x \rightarrow 0} (e^{x} + ax^{2} + bx)^{\frac{1}{x^{2}}} = 1$, 则 $?$
$$A. a = \frac{1}{2}, b = -1$$
$$B. a = – \frac{1}{2}, b = -1$$
$$C. a = \frac{1}{2}, b = 1$$
$$D. a = – \frac{1}{2}, b = 1$$
继续阅读“2018年考研数二第01题解析”