确定一点处是否可导?直接用一点处导数的定义试试看吧!

一、题目题目 - 荒原之梦

下列函数中在 $x=0$ 处可导的是哪个或哪些?

(1) $f(x)=\cos x^{\frac{2}{3}}$;

(2) $f(x)=\sin x^{\frac{2}{3}}$;

(3) $f(x)=(1-\cos x)^{\frac{2}{3}}$;

(4) $f(x)=\left(\sin x^{2}\right)^{\frac{1}{3}}$.

难度评级:

继续阅读“确定一点处是否可导?直接用一点处导数的定义试试看吧!”

荒原之梦原创解题方法之函数本体偏离点必为尖点:直观的判断一个点是否是尖点(不可导点)

一、题目题目 - 荒原之梦

下面哪个函数在 $x=0$ 处可导:

(A) $f(x)=\mathrm{e}^{|x|}$.

(B) $f(x)=\arctan |x|$.

(C) $f(x)=\left\{\begin{array}{cc}x^{\frac{4}{3}} \sin \frac{1}{x}, & x \neq 0 \\ 0 & x=0\end{array}\right.$.

(D) $f(x)=\arcsin \sqrt{|x|}$.

难度评级:

继续阅读“荒原之梦原创解题方法之函数本体偏离点必为尖点:直观的判断一个点是否是尖点(不可导点)”

有零阶导、一阶导还有二阶导?那么,这道题很可能可以用泰勒公式哦!

一、题目题目 - 荒原之梦

已知,函数 $f(x)$ 有二阶连续导数,且 $f(a)=0$. 若令 $g(x)=\left\{\begin{array}{ll}f^{\prime}(a), & x=a \\ \frac{f(x)}{x-a}, & x \neq a\end{array}\right.$, 则函数 $g(x)$ 在 $x = a$ 存在一阶导数吗?如果存在,那么 $g^{\prime}(a) = ?$

难度评级:

继续阅读“有零阶导、一阶导还有二阶导?那么,这道题很可能可以用泰勒公式哦!”

为什么在加减运算中有无穷大时可以“取大头”,有无穷小时不能“去小头”呢?

一、题目题目 - 荒原之梦

已知 $f(x)$ 导数连续且 $f^{\prime}(1)=1$, 则当 $x \rightarrow 0$ 时, 函数 $f(\cos x)-f\left(\frac{2}{2-x^{2}}\right)$ 是 $x$ 的几阶无穷小?

难度评级:

加减运算中的无穷小为什么不能直接舍去?做了这道题你就明白了!

继续阅读“为什么在加减运算中有无穷大时可以“取大头”,有无穷小时不能“去小头”呢?”

整体加绝对值的函数哪些点是不可导点:绝对值符号内的函数值等于零但一阶导不等于零的点

一、题目题目 - 荒原之梦

已知 $f(x)$ $=$ $\left|(x-1)(x-2)^{2}(x-3)^{3}\right|$, 则 $f^{\prime}(x)$ 不存在的点个数是多少?

难度评级:

继续阅读“整体加绝对值的函数哪些点是不可导点:绝对值符号内的函数值等于零但一阶导不等于零的点”

【零】可以“抹平”不可导点:不可导点(函数)乘以 0 会变成可导点(函数)

一、题目题目 - 荒原之梦

函数 $f(x)=\left(x^{2}+x-2\right)|\sin 2 \pi x|$ 在 $\left(-\frac{1}{2}, \frac{3}{2}\right)$ 区间内不可导点的个数是多少?

难度评级:

继续阅读“【零】可以“抹平”不可导点:不可导点(函数)乘以 0 会变成可导点(函数)”

不同函数一阶导之间的大小与这个这些函数原函数之间的大小没有任何关系

一、题目题目 - 荒原之梦

已知,函数 $f(x)$ 与 $g(x)$ 在 $(a, b)$ 上可导,则以下论述正确的是哪个?

(1) 若 $f(x)>g(x)$, 则 $f^{\prime}(x)>g^{\prime}(x)$;

(2) 若 $f^{\prime}(x)>g^{\prime}(x)$ 则 $f(x)>g(x)$.

难度评级:

继续阅读“不同函数一阶导之间的大小与这个这些函数原函数之间的大小没有任何关系”

你知道三次函数的函数图像怎么画吗?如果知道的话,这道题可以秒解哦

一、题目题目 - 荒原之梦

已知 $p(x)$ $=$ $x^{3}+a x^{2}+b x+c$, 方程 $p(x)=0$ 有三个相异的实根 $x_{1}, x_{2}, x_{3}$, 且 $x_{1} < x_{2} < x_{3}$, 则 $p^{\prime}\left(x_{1}\right)$, $p^{\prime}\left(x_{2}\right)$, $p^{\prime}\left(x_{3}\right)$ 与 $0$ 的大小关系如何?

难度评级:

继续阅读“你知道三次函数的函数图像怎么画吗?如果知道的话,这道题可以秒解哦”

偶函数在 Y 轴两侧一阶导和二阶导的性质你知道吗?

一、题目题目 - 荒原之梦

已知,函数 $f(x)$ 在 $(-\infty,+\infty)$ 内存在二阶导数,且 $f(x)=f(-x)$, 当 $x<0$ 时有 $f^{\prime}(x)<0$, $f^{\prime \prime}(x)>0$, 则当 $x>0$ 时,则 $f^{\prime}(x)$ 和 $f^{\prime \prime}(x)$ 与 $0$ 的大小关系是怎样的?

难度评级:

继续阅读“偶函数在 Y 轴两侧一阶导和二阶导的性质你知道吗?”

判断一个点是否是间断点不能只看该点处的情况,还要看该点周围的情况

一、题目题目 - 荒原之梦

已知 $f(x)$ 与 $g(x)$ 在 $(-\infty,+\infty)$ 内都有定义,且 $x=x_{1}$ 是 $f(x)$ 的唯一间断点, $x=$ $x_{2}$ 是 $g(x)$ 的唯一间断点. 则 $x = 1$ 和 $x = -1$ 分别是该函数的什么间断点?

难度评级:

继续阅读“判断一个点是否是间断点不能只看该点处的情况,还要看该点周围的情况”

荒原之梦原创解题方法:田字格分段函数融合法

一、题目题目 - 荒原之梦

已知 $f(x)=\left\{\begin{array}{ll}x, & x<1 \\ a, & x \geqslant 1\end{array}\right.$, $g(x)=\left\{\begin{array}{cc}b, & x<0 \\ x+2, & x \geqslant 0\end{array}\right.$, 且 $f(x)+g(x)$ 为连续函数, 则 $a$ 和 $b$ 的值分别是多少?

难度评级:

继续阅读“荒原之梦原创解题方法:田字格分段函数融合法”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学练习题、考研数学真题等方面,大量精心研发的学习资源。

豫ICP备17023611号-1 | 公网安备 - 荒原之梦 豫公网安备41142502000132号
Copyright©2017-2025 ZhaoKaifeng.com 版权所有 All Rights Reserved.

豫ICP备17023611号-1
 豫公网安备41142502000132号
Copyright©2025   ZhaoKaifeng.com   All Rights Reserved.

荒原之梦 自豪地采用WordPress