一、题目
下列说法中错误的是哪个?
(A) 设 $f(x)$ 在 $[-a, a]$ 上连续为奇函数, 则 $f(x)$ 在 $[-a, a]$ 上的全体原函数为偶函数
(B) 设 $f(x)$ 在 $[-a, a]$ 上连续为偶函数, 则 $f(x)$ 在 $[-a, a]$ 上的全体原函数为奇函数
(C) 设 $f(x)$ 在 $(-\infty,+\infty)$ 内连续, 以 $T$ 为周期且为奇函数, 则 $\int_{0}^{x} f(t) \mathrm{d} t$ 也是以 $T$ 为周期的函数
(D) 设 $f(x)$ 在 $(-\infty,+\infty)$ 内连续, 以 $T$ 为周期, 又 $\int_{0}^{+\infty} f(x) \mathrm{d} x$ 收敛, 则 $\int_{0}^{x} f(t) \mathrm{d} t$ 也是以 $T$ 为周期的函数
难度评级:
继续阅读“奇函数必须关于原点斜对称(一般情况下奇函数在原点处都有定义)”