2015年考研数二第20题解析:物理应用、微分、一阶线性微分方程

题目

已知高温物体置于低温介质中,任一时刻该物体温度对时间的变化率与该时刻物体和介质的温差成正比,现将一初始温度为 $120$ ℃ 的物体在 $20$ ℃ 的恒温介质中冷却,$30$ min 后该物体温度降至 $30$ ℃, 若要将该物体的温度降至 $21$ ℃, 还需要冷却多长时间?

继续阅读“2015年考研数二第20题解析:物理应用、微分、一阶线性微分方程”

2015年考研数二第18题解析:二重积分、二重积分的化简、三角函数代换、华里士点火公式

题目

计算二重积分 $\iint_{D} x(x+y) {\rm d} x {\rm d} y$, 其中 $D=$ $\left\{(x,y) | x^{2} + y^{2} \leqslant 2, y \geqslant x^{2} \right\}$.

继续阅读“2015年考研数二第18题解析:二重积分、二重积分的化简、三角函数代换、华里士点火公式”

2015年考研数二第17题解析:利用二元函数的偏导数求极值、不定积分

题目

已知函数 $f(x,y)$ 满足:

$$
f_{xy}^{”}(x,y) = 2(y+1)e^{x},
$$

$$
f_{x}^{‘}(x,0) = (x+1)e^{x},
$$

$$
f(0,y) = y^{2} + 2y.
$$

求 $f(x,y)$ 的极值.

继续阅读“2015年考研数二第17题解析:利用二元函数的偏导数求极值、不定积分”

2015年考研数二第16题解析:定积分、旋转体的体积

题目

设 $A>0$, $D$ 是由曲线段 $y=$ $A \sin x$ $(0 \leqslant x \leqslant \frac{\pi}{2})$ 及直线 $y=0$, $x = \frac{\pi}{2}$ 所围成的平面区域,$V_{1}$, $V_{2}$ 分别表示 $D$ 绕 $x$ 轴与绕 $y$ 轴旋转所成旋转体的体积,若 $V_{1}=V_{2}$, 求 $A$ 的值.

继续阅读“2015年考研数二第16题解析:定积分、旋转体的体积”

2014年考研数二第23题解析:矩阵相似性、矩阵相似对角化

题目

证明:$n$ 阶矩阵 $\begin{bmatrix}
1 & 1 & \cdots & 1\\
1 & 1 & \cdots & 1\\
\vdots & \vdots & & \vdots\\
1 & 1 & \cdots & 1
\end{bmatrix}$ 与 $\begin{bmatrix}
0 & \cdots & 0 & 1\\
0 & \cdots & 0 & 2\\
\vdots & & \vdots & \vdots\\
0 & \cdots & 0 & n
\end{bmatrix}$ 相似.

继续阅读“2014年考研数二第23题解析:矩阵相似性、矩阵相似对角化”

2014年考研数二第22题解析:齐次与非齐次线性方程组求解

题目

设 $A=\begin{bmatrix}
1 & -2 & 3 & -4\\
0 & 1 & -1 & 1\\
1 & 2 & 0 & -3
\end{bmatrix}$, $E$ 为三阶单位矩阵.

$(Ⅰ)$ 求方程组 $AX=0$ 的一个基础解系.

$(Ⅱ)$ 求满足 $AB=E$ 的所有矩阵 $B$.

继续阅读“2014年考研数二第22题解析:齐次与非齐次线性方程组求解”

2014年考研数二第21题解析:旋转体的体积、偏导数

题目

已知函数 $f(x,y)$ 满足 $\frac{\partial f}{\partial y} =$ $2(y+1)$, 且 $f(y,y) =$ $(y+1)^{2}-$ $(2-y) \ln y$, 求曲线 $f(x,y)=0$ 所围图形绕直线 $y=-1$ 旋转所成旋转体的体积.

继续阅读“2014年考研数二第21题解析:旋转体的体积、偏导数”

2014年考研数二第20题解析:极限、数列、数学归纳法

题目

设函数 $f(x)=$ $\frac{x}{1+x}$, $x \in [0,1]$, 定义数列:

$$
f_{1}(x) = f(x),
$$

$$
f_{2}(x) = f[f_{1}(x)],
$$

$$
\cdot \cdot \cdot,
$$

$$
f_{n}(x) = f[f_{n-1}(x)],
$$

$$
\cdot \cdot \cdot
$$

记 $S_{n}$ 是曲线 $y=f_{n}(x)$, 直线 $x=1$ 及 $x$ 轴所围平面图形的面积,求极限 $\lim_{n \rightarrow \infty} n S_{n}$.

继续阅读“2014年考研数二第20题解析:极限、数列、数学归纳法”

2014年考研数二第19题解析:变上限积分、函数的单调性、积分中值定理

题目

设 $f(x)$, $g(x)$ 在 $[a,b]$ 上连续,且 $f(x)$ 单调增加,$0 \leqslant g(x) \leqslant 1$, 证明:

$(Ⅰ)$ $0 \leqslant \int_{a}^{x} g(t) dt$ $\leqslant x-a$, $x \in [a,b]$;

$(Ⅱ)$ $\int_{a}^{a+\int_{a}^{b}g(t) dt} f(x) dx$ $\leqslant$ $\int_{a}^{b} f(x) g(x) dx$.

继续阅读“2014年考研数二第19题解析:变上限积分、函数的单调性、积分中值定理”

2014年考研数二第18题解析:偏导数、二阶常系数非齐次线性微分方程

题目

设函数 $f(u)$ 二阶连续可导,$z=f(e^{x} \cos y)$ 满足 $\frac{\partial ^{2} z}{\partial x^{2}} + \frac{\partial ^{2} z}{\partial y^{2}}$ $=(4z + e^{x} \cos y)e^{2x}$, 若 $f(0)=0$, $f^{‘}(0)=0$, 求 $f(u)$ 的表达式.

继续阅读“2014年考研数二第18题解析:偏导数、二阶常系数非齐次线性微分方程”

2014年考研数二第17题解析:二重积分、极坐标系

题目

设平面区域 $D=$ $\{(x,y)|$ $1 \leqslant x^{2} + y^{2} \leqslant 4$, $x \geqslant 0$, $y \geqslant 0 \}$, 计算:

$$
\iint_{D} \frac{x \sin (\pi \sqrt{x^{2}+y^{2}})}{x+y} dxdy.
$$

解析

根据题目可知,积分区域 $D$ 是由两个圆心坐标均为 $(0,0)$, 半径分别为 $1$ 和 $2$ 的两个同心圆在直角坐标系的第一象限中围成的,如图 01 所示:

2014年考研数二第17题解析:二重积分、极坐标系_荒原之梦
图 01.
继续阅读“2014年考研数二第17题解析:二重积分、极坐标系”

2014年考研数二第16题解析:一阶线性微分方程求极值、求导

题目

已知函数 $y=y(x)$ 满足微分方程 $x^{2}+y^{2}y^{‘} = 1-y^{‘}$, 且 $y(2)=0$, 求 $y=y(x)$ 的极大值与极小值.

继续阅读“2014年考研数二第16题解析:一阶线性微分方程求极值、求导”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress