题目
设 $A$ 为 $3$ 阶矩阵,$P=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ 为可逆矩阵,使得 $P^{-1}AP=\begin{bmatrix}
0& 0& 0\\
0& 1& 0\\
0& 0& 2
\end{bmatrix}$, 则 $A(\alpha_{1} + \alpha_{2} + \alpha_{3}) = ?$
$$A. \alpha_{1} + \alpha_{2}$$
$$B. \alpha_{2} + 2 \alpha_{3}$$
$$C. \alpha_{2} + \alpha_{3}$$
$$D. \alpha_{1} + 2 \alpha_{2}$$
继续阅读“2017年考研数二第07题解析”