2024年考研数二第09题解析:抽象矩阵秩的特征

一、题目题目 - 荒原之梦

设 $A$ 为 4 阶矩阵, $A^{*}$ 为 $A$ 的伴随矩阵, 若 $A\left(A-A^{*}\right)$ $=$ $O$, 且 $A \neq A^{*}$, 则 $r(A)$ 取值为 ( )

(A) 0 或 1
(B) 1 或 3

(C) 2 或 3
(D) 1 或 2

难度评级:

继续阅读“2024年考研数二第09题解析:抽象矩阵秩的特征”

2024年考研数二第08题解析:逆矩阵的计算

一、题目题目 - 荒原之梦

设 $\boldsymbol{A}$ 为三阶矩阵, $\boldsymbol{P}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$, 若 $\boldsymbol{P}^{\mathrm{\top}} \boldsymbol{A} \boldsymbol{P}^{2}=\left(\begin{array}{ccc}a+2 c & 0 & c \\ 0 & b & 0 \\ 2 c & 0 & c\end{array}\right)$, 则 $\boldsymbol{A}=$

A. $\left(\begin{array}{lll}c & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right)$

B. $\left(\begin{array}{lll}b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & a\end{array}\right)$

C. $\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$

D. $\left(\begin{array}{lll}c & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & a\end{array}\right)$

难度评级:

继续阅读“2024年考研数二第08题解析:逆矩阵的计算”

2024年考研数二第07题解析:积分敛散性的判别

一、题目题目 - 荒原之梦

设非负函数 $f(x)$ 在 $[0,+\infty)$ 上连续, 给出以下三个命题:

(1)若 $\int_{0}^{+\infty} f^{2}(x) \mathrm{~d} x$ 收敛, 则 $\int_{0}^{+\infty} f(x) \mathrm{~d} x$ 收敛.

(2)若存在 $p>1$, 使得 $\lim \limits_{x \rightarrow+\infty} x^{p} f(x)$ 存在, 则 $\int_{0}^{+\infty} f(x) \mathrm{~d} x$ 收敛.

(3)若 $\int_{0}^{+\infty} f(x) \mathrm{~d} x$ 收敛, 则存在 $p>1$, 使得 $\lim \limits_{x \rightarrow+\infty} x^{p} f(x)$ 存在.

其中真命题个数为( )

(A) 0

(B) 1

(C) 2

(D) 3

难度评级:

继续阅读“2024年考研数二第07题解析:积分敛散性的判别”

转为极坐标系后,怎么确定新的积分上下限?

一、题目题目 - 荒原之梦

已知积分区域 $D$ $=$ $\left\{(x, y) \mid x^{2}+y^{2} \leqslant y\right\}$, 求二重积分 $I$ $=$ $\iint_{D} \sqrt{1-x^{2}-y^{2}} \mathrm{~d} \sigma$.

难度评级:

继续阅读“转为极坐标系后,怎么确定新的积分上下限?”

通过罗尔定理推导不同阶导数之间零点个数的关系

一、前言 前言 - 荒原之梦

通过本文,荒原之梦考研网将带你一起搞明白如下这类问题:

*如果三阶导数 $f^{\prime \prime \prime}(x)$ 没有零点,那么其原函数 $f(x)$ 最多可能存在多少个零点?

**如果三阶导数 $f^{\prime \prime \prime}(x)$ 有 $1$ 个零点,那么其原函数 $f(x)$ 最多可能存在多少个零点?

继续阅读“通过罗尔定理推导不同阶导数之间零点个数的关系”

特殊条件约束下的一般非齐次二阶线性微分方程特解的求解

一、题目题目 - 荒原之梦

已知,方程 $y^{\prime \prime}$ $+$ $4 y^{\prime}$ $+$ $4 y$ $=$ $\mathrm{e}^{-2 x}$ 满足条件 $y(0)=0$ 和 $y^{\prime}(0)=1$. 则该方程的特解为( )

难度评级:

继续阅读“特殊条件约束下的一般非齐次二阶线性微分方程特解的求解”

2024年考研数二第06题解析:绘制积分区域,变换积分次序

一、题目题目 - 荒原之梦

设 $f(x, y)$ 是连续函数, 则 $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \mathrm{~d} x \int_{\sin x}^{1} f(x, y) \mathrm{~d} y=(\quad)$

(A) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$

(B) $\int_{\frac{1}{2}}^{1} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$

(C) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\frac{\pi}{6}}^{\arcsin y} f(x, y) \mathrm{~d} x$

(D) $\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \mathrm{~d} x$

难度评级:

继续阅读“2024年考研数二第06题解析:绘制积分区域,变换积分次序”

2024年考研数二第05题解析:二元函数在一点处可微的判定、有界震荡无极限

一、题目题目 - 荒原之梦

已知函数 $f(x, y)$ $=$ $\left\{\begin{array}{l}\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}, & x y \neq 0 \\ 0, & x y=0\end{array}\right.$, 则在点 $(0,0)$ 处

(A) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 可微

(B) $\frac{\partial f(x, y)}{\partial x}$ 连续, $f(x, y)$ 不可微

(C) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 可微

(D) $\frac{\partial f(x, y)}{\partial x}$ 不连续, $f(x, y)$ 不可微

难度评级:

继续阅读“2024年考研数二第05题解析:二元函数在一点处可微的判定、有界震荡无极限”

2024年考研数二第04题解析:用特例法求解判断数列的敛散性

一、题目题目 - 荒原之梦

已知数列 $\left\{a_n\right\}\left(a_n \neq 0\right)$, 若 $\left\{a_n\right\}$ 发散, 则 ( )

(A) $\left\{a_n+\frac{1}{a_n}\right\}$ 发散

(B) $\left\{a_n-\frac{1}{a_n}\right\}$ 发散

(C) $\left\{e^{a_n}+\frac{1}{e^{a_n}}\right\}$ 发散

(D) $\left\{e^{a_n}-\frac{1}{e^{a_n}}\right\}$ 发散

难度评级:

继续阅读“2024年考研数二第04题解析:用特例法求解判断数列的敛散性”

考研高等数学思维导图:05-导数的应用 [GS-20250201]

涉及的知识点

01. 函数的极值
02. 极值存在的必要条件
03. 极值存在的充分条件
04. 极值存在的充要条件
05. 求函数最值得方法

06. 凹凸性得判定
07. 常见得特征点
08. 渐近线
09. 曲率、曲率半径、曲率圆

继续阅读“考研高等数学思维导图:05-导数的应用 [GS-20250201]”

计算复杂但有规律的式子,要学会化繁为简,使计算过程充分清晰

一、题目题目 - 荒原之梦

计算下面这个式子的值:

$$
\begin{aligned}
I \\ \\
& = \left( \frac{1}{3}x^{3} – \frac{1}{2}x^{2} \right) \Bigg|_{-4}^{0} – \left( \frac{1}{3}x^{3} – \frac{1}{2}x^{2} \right) \Bigg|_{0}^{1} + \left( \frac{1}{3}x^{3} – \frac{1}{2}x^{2} \right) \Bigg|_{1}^{4}
\end{aligned}
$$

难度评级:

继续阅读“计算复杂但有规律的式子,要学会化繁为简,使计算过程充分清晰”

考研高等数学思维导图:03-导数和微分 [GS-20250201]

涉及的知识点

01. 一点处导数的定义
02. 左右导数
03. 导数的几何意义
04. 微分的定义
05. 导数的运算法则
06. 基本求导公式
07. 莱布尼兹公式

08. 可微的充要条件
09. 可导与连续的关系
10. 复合函数求导
11. 反函数求导
12. 隐函数求导
13. 变量交替求导
14. 参数方程求导

继续阅读“考研高等数学思维导图:03-导数和微分 [GS-20250201]”

2024年考研数二第03题解析:奇奇复合才为奇,有偶复合必为偶

一、题目题目 - 荒原之梦

设函数 $f(x)$ $=$ $\int_{0}^{\sin x} \sin t^{3} \mathrm{~d} t$, $g(x)=\int_{0}^{x} f(t) \mathrm{~d} t$, 则 ($\quad$)

(A) $f(x)$ 是奇函数, $g(x)$ 是奇函数
(B) $f(x)$ 是奇函数, $g(x)$ 是偶函数
(C) $f(x)$ 是偶函数, $g(x)$ 是偶函数
(D) $f(x)$ 是偶函数, $g(x)$ 是奇函数

难度评级:

继续阅读“2024年考研数二第03题解析:奇奇复合才为奇,有偶复合必为偶”

荒原之梦网全部内容均为原创,提供了涵盖考研数学基础知识、考研数学真题、考研数学练习题和计算机科学等方面,大量精心研发的学习资源。

意见反馈 | 内容纠错 | 微信 | QQ | 公众号 | 知乎 | 微博 | 博客园 |CSDN | B 站 | 电子邮件
豫 ICP 备 17023611 号-1 | 公网安备 - 荒原之梦 豫公网安备 41142502000132 号 | SiteMap
Copyright © 2017-2024 ZhaoKaifeng.com 版权所有 All Rights Reserved.

Copyright © 2024   zhaokaifeng.com   All Rights Reserved.
豫ICP备17023611号-1
 豫公网安备41142502000132号

荒原之梦 自豪地采用WordPress