题目
设 $D$ 是第一象限中由曲线 $2xy=1$, $4xy=1$ 与直线 $y=x$, $y= \sqrt{3}x$ 围成的平面区域,函数 $f(x,y)$ 在 $D$ 上连续,则 $\iint_{D} f(x,y)dxdy = ?$
$$
A. \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} d \theta \int_{\frac{1}{2 \sin 2 \theta}}^{\frac{1}{\sin 2 \theta}} f(r \cos \theta, r \sin \theta) r dr
$$
$$
B. \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} d \theta \int_{\frac{1}{\sqrt{2 \sin 2 \theta}}}^{\frac{1}{\sqrt{\sin 2 \theta}}} f(r \cos \theta, r \sin \theta) r dr
$$
$$
C. \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} d \theta \int_{\frac{1}{2 \sin 2 \theta}}^{\frac{1}{\sin 2 \theta}} f(r \cos \theta, r \sin \theta) dr
$$
$$
D. \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} d \theta \int_{\frac{1}{\sqrt{2 \sin 2 \theta}}}^{\frac{1}{\sqrt{\sin 2 \theta}}} f(r \cos \theta, r \sin \theta) dr
$$
继续阅读“2015年考研数二第06题解析”